Eigenvalues of Integral Operators Defined by Smooth Positive Definite Kernels

被引:0
作者
J. C. Ferreira
V. A. Menegatto
机构
[1] ICMC-USP - São Carlos,Departamento de Matemática
来源
Integral Equations and Operator Theory | 2009年 / 64卷
关键词
Primary 45P05; Secondary 42A82, 45C05, 43A35, 41A99; Integral operators; eigenvalue estimates; positive definiteness; Mercer’s theorem; trace; trace norm;
D O I
暂无
中图分类号
学科分类号
摘要
We consider integral operators defined by positive definite kernels \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K : X \times X \rightarrow {\mathbb{C}}$$\end{document}, where X is a metric space endowed with a strictly-positive measure. We update upon connections between two concepts of positive definiteness and upgrade on results related to Mercer like kernels. Under smoothness assumptions on K, we present decay rates for the eigenvalues of the integral operator, employing adapted to our purposes multidimensional versions of known techniques used to analyze similar problems in the case where X is an interval. The results cover the case when X is a subset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^{m}$$\end{document} endowed with the induced Lebesgue measure and the case when X is a subset of the sphere Sm endowed with the induced surface Lebesgue measure.
引用
收藏
页码:61 / 81
页数:20
相关论文
empty
未找到相关数据