On the Sum of Generalized Frames in Hilbert Spaces

被引:0
|
作者
F. Abtahi
Z. Kamali
Z. Keyshams
机构
[1] University of Isfahan,Department of Pure Mathematis, Faculty of Mathematics and Statistics
[2] Islamic Azad University,Department of Mathematics, Isfahan (Khorasgan) Branch
来源
关键词
Controlled frame; frame; -frame; -; -frame; synthesis operator; Primary 42C15; Secondary 46C07;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} be a separable Hilbert space. It is known that the finite sum of Bessel sequences in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} is still a Bessel sequence. But the finite sum of generalized notions of frames does not necessarily remain stable in its initial form. In this paper, for a prescribed Bessel sequence F={fn}n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F=\{f_n\}_{n=1}^\infty $$\end{document}, we introduce and study KF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {KF}}$$\end{document}, the set consisting of all operators K∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in {\mathcal {B}}({\mathcal {H}})$$\end{document}, such that {fn}n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f_n\}_{n=1}^\infty $$\end{document} is a K-frame. We show that KF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {KF}}$$\end{document} is a right ideal of B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}({\mathcal {H}})$$\end{document}. We indicate by an example that KF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {KF}}$$\end{document} is not necessarily a left ideal. Moreover, we provide some sufficient conditions for the finite sum of K-frames to be a K-frame. We also use some examples to compare our results with existing ones. These examples demonstrate that our achievements do not depend on the available results. Furthermore, we study the same subject for K-g-frames and controlled frames and get some similar significant results.
引用
收藏
相关论文
共 50 条
  • [1] On the Sum of Generalized Frames in Hilbert Spaces
    Abtahi, F.
    Kamali, Z.
    Keyshams, Z.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [2] GENERALIZED FRAMES IN HILBERT SPACES
    Najati, A.
    Rahimi, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2009, 35 (01) : 97 - 109
  • [3] On the Sum of K-Frames in Hilbert Spaces
    He, Miao
    Leng, Jinsong
    Yu, Jiali
    Xu, Yuxiang
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [4] ON SUM OF G-FRAMES IN HILBERT SPACES
    Chugh, Renu
    Goel, Shashank
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2012, 5 (02): : 115 - 124
  • [5] On the Sum of K-Frames in Hilbert Spaces
    Miao He
    Jinsong Leng
    Jiali Yu
    Yuxiang Xu
    Mediterranean Journal of Mathematics, 2020, 17
  • [6] Generalized frames for operators in Hilbert spaces
    Asgari, Mohammad Sadegh
    Rahimi, Hamidreza
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2014, 17 (02)
  • [7] MULTIPLIERS OF GENERALIZED FRAMES IN HILBERT SPACES
    Rahimi, A.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2011, 37 (01) : 63 - 80
  • [8] ON GENERALIZED WEAVING FRAMES IN HILBERT SPACES
    Vashisht, Lalit K.
    Garg, Saakshi
    Deepshikha
    Das, P. K.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (02) : 661 - 685
  • [9] Generalized Frames on Super Hilbert Spaces
    Abdollahi, A.
    Rahimi, E.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2012, 35 (03) : 807 - 818
  • [10] On the Sum of g-Frames and Their Stability in Hilbert Spaces
    Baradaran, Javad
    Zerehpoush, Morteza
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)