On the Sum of Generalized Frames in Hilbert Spaces

被引:0
作者
F. Abtahi
Z. Kamali
Z. Keyshams
机构
[1] University of Isfahan,Department of Pure Mathematis, Faculty of Mathematics and Statistics
[2] Islamic Azad University,Department of Mathematics, Isfahan (Khorasgan) Branch
来源
Mediterranean Journal of Mathematics | 2021年 / 18卷
关键词
Controlled frame; frame; -frame; -; -frame; synthesis operator; Primary 42C15; Secondary 46C07;
D O I
暂无
中图分类号
学科分类号
摘要
Let H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} be a separable Hilbert space. It is known that the finite sum of Bessel sequences in H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}$$\end{document} is still a Bessel sequence. But the finite sum of generalized notions of frames does not necessarily remain stable in its initial form. In this paper, for a prescribed Bessel sequence F={fn}n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F=\{f_n\}_{n=1}^\infty $$\end{document}, we introduce and study KF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {KF}}$$\end{document}, the set consisting of all operators K∈B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K\in {\mathcal {B}}({\mathcal {H}})$$\end{document}, such that {fn}n=1∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{f_n\}_{n=1}^\infty $$\end{document} is a K-frame. We show that KF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {KF}}$$\end{document} is a right ideal of B(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}({\mathcal {H}})$$\end{document}. We indicate by an example that KF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {KF}}$$\end{document} is not necessarily a left ideal. Moreover, we provide some sufficient conditions for the finite sum of K-frames to be a K-frame. We also use some examples to compare our results with existing ones. These examples demonstrate that our achievements do not depend on the available results. Furthermore, we study the same subject for K-g-frames and controlled frames and get some similar significant results.
引用
收藏
相关论文
共 47 条
[1]  
Arabyani Neyshaburi F(2017)Some constructions of K-frames and their duals Rocky Mt. J. Math. 47 1749-1764
[2]  
Arefijamaal AA(2010)Weighted and controlled frames: mutual Relationship and first numerical properties Int. J. Wavelets Multiresolut. Inf. Process. 8 109-132
[3]  
Balasz P(2005)Stereographic wavelet frames on the sphere Appl. Comput. Harmon. Anal. 19 223-252
[4]  
Antonie J-P(2000)The art of frame theory Taiwan. J. Math. 4 129-201
[5]  
Graybos A(1986)Painless nonorthogonal expansions J. Math. Phys. 27 1271-1283
[6]  
Bogdanova I(1966)On majorization, factorization, and range inclusion of operators on Hilbert space Proc. Amer. Math. Soc. 17 413-415
[7]  
Vandergheynst P(1952)A class of nonharmonic fourier series Trans. Amer. Math. Soc. 72 341-366
[8]  
Antoine JP(2014)Constructions of frames by disjoint frames Numer. Funct. Anal. Optim. 35 576-587
[9]  
Jacques L(2016)Canonical dual K-Bessel sequences and dual K-Bessel generators for unitary systems of Hilbert spaces J. Math. Anal. Appl. 444 598-609
[10]  
Morvidone M(2020)On the Sum of K-Frames in Hilbert Spaces Mediterr. J. Math. 17 1-19