The Phase Transitions from Chiral Nematic Toward Smectic Liquid Crystals

被引:0
作者
Sookyung Joo
Daniel Phillips
机构
[1] University of Minnesota,Institute for Mathematics and its Applications
[2] Purdue University,Mathematics Department
来源
Communications in Mathematical Physics | 2007年 / 269卷
关键词
Phase Transition; Liquid Crystal; Nematic Phase; Smectic Phase; Smectic Layer;
D O I
暂无
中图分类号
学科分类号
摘要
A Chen-Lubensky energy is used to investigate phase transitions from chiral nematic to smectic C* and smectic A* liquid crystal phases. We consider a liquid crystalline material Ω confined between two parallel plates, where the dimensions of Ω are assumed to be large relative both to the width of a smectic layer and the material’s chiral pitch. We take boundary conditions so that the smectic phase melts at the plates’ surfaces and prove the existence of energy minimizers in an admissible set consisting of order parameters \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Psi \in \mathcal{H}^{2}_{0}(\Omega)}$$\end{document} and molecular directors \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{n} \in \mathbf{W}^{1,2} (\Omega; \mathbb{S}^{2})}$$\end{document} . Then under the physically observed assumption that the Frank elasticity constants become large near a phase transition, we establish estimates for the transition region separating phases. In particular we derive analytic estimates proving that chirality lowers the transition temperature regime above which minimizers are nematic and below which minimizers are in a smectic phase.
引用
收藏
页码:367 / 399
页数:32
相关论文
共 27 条
[1]  
Bauman P.(2002)The phase transition between chiral nematic and smectic A* liquid crystals Arch. Rat. Mech. Anal. 165 161-186
[2]  
Carme Calderer M.(1998)Stable nucleation for the Ginzburg-Landau system with an applied magnetic field Arch. Rat. Mech. Anal. 142 1-43
[3]  
Liu C.(1993)Positional anchoring of smectic liquid crystals Phys. Rev. Lett. 70 2742-2745
[4]  
Phillips D.(1976)Landau-Ginzburg mean-field theory for the nematic to smectic-C and nematic to smectic-A phase transitions. Phys Rev. A, 14 1202-1207
[5]  
Bauman P.(2002)The breakdown of superconductivity due to strong fields for the Ginzbug-Landau models SIGEST Article, SIAM Rev. 44 237-256
[6]  
Phillips D.(1994)Specific heat dependence on orientational order at cylindrically confined liquid crystal phase transitions Phys. Rev. E 50 4780-4795
[7]  
Tang Q.(1996)Smectic-A structures in submicrometer cylinderical cavities Phys. Rev. E 54 1610-1617
[8]  
Cagnon M.(1988)Abrikosov dislocation lattice in a model of the cholesteric to smectic-A transition Phys. Rev. A 38 2132-2147
[9]  
Durand G.(1990)Twist–grain–boundary phases near the nematic—smectic-A—smectic-C point in liquid crystals Phys. Rev. A 41 4392-4401
[10]  
Chen J.-H.(1995)Abrikosov vortex lattices in liquid crystals Physica A 220 99-112