Hermitian-einstein metrics on parabolic stable bundles

被引:0
|
作者
Jiayu Li
M. S. Narasimhan
机构
[1] Academia Sinica,Institute of Mathematics
[2] International Centre for Theoretic Physics,Mathematics Section
来源
Acta Mathematica Sinica | 1999年 / 15卷
关键词
Hermitian-Einstein metric; Parabolic stable bundle; Kähler manifold; 58E15; 32L07; 53C07;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline M $$ \end{document} be a compact complex manifold of complex dimension two with a smooth Kähler metric and D a smooth divisor on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline M $$ \end{document}. If E is a rank 2 holomorphic vector bundle on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline M $$ \end{document} with a stable parabolic structure along D, we prove the existence of a metric on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$E'{\text{ = }}E|_{\overline M \backslash D} $$ \end{document} (compatible with the parabolic structure) which is Hermitian-Einstein with respect to the restriction of the Kähler metric to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline M $$ \end{document}ĚD. A converse is also proved.
引用
收藏
页码:93 / 114
页数:21
相关论文
共 50 条