Kenmotsu Metric as Conformal η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci Soliton

被引:0
作者
Yanlin Li
Dipen Ganguly
机构
[1] Hangzhou Normal University,School of Mathematics
[2] Jadavpur University,Department of Mathematics
关键词
Ricci flow; Ricci soliton; conformal ; -Ricci soliton; Kenmotsu manifold; generalized ; -conformal deformation; 53C15; 53C25; 53C44;
D O I
10.1007/s00009-023-02396-0
中图分类号
学科分类号
摘要
The object of the present paper is to characterize the class of Kenmotsu manifolds which admits conformal η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci soliton. Here, we have investigated the nature of the conformal η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci soliton within the framework of Kenmotsu manifolds. It is shown that an η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Einstein Kenmotsu manifold admitting conformal η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci soliton is an Einstein one. Moving further, we have considered gradient conformal η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci soliton on Kenmotsu manifold and established a relation between the potential vector field and the Reeb vector field. Next, it is proved that under certain condition, a conformal η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci soliton on Kenmotsu manifolds under generalized D-conformal deformation remains invariant. Finally, we have constructed an example for the existence of conformal η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}-Ricci soliton on Kenmotsu manifold.
引用
收藏
相关论文
共 80 条
  • [1] Alegre P(2011)Generalized Sasakian space form and conformal changes of the metric Results Math. 59 485-493
  • [2] Carriazo A(2015)Conformal Ricci soliton in Kenmotsu manifold Glob. J. Adv. Res. Class. Mod. Geom. 4 15-21
  • [3] Basu N(2012)-Ricci solitons on Hopf hypersurfaces in complex space forms Revue Roum. Math. Pures Appl. 57 53-63
  • [4] Bhattacharyya A(2009)Ricci solitons and real hypersurfaces in a complex space forms Tohoku Math. J. 61 205-212
  • [5] Calin C(2004)An introduction to conformal Ricci flow Class. Quantum Gravity 21 S171-S218
  • [6] Crasmareanu M(2020)A study on conformal Ricci solitons in the framework of Ganita 70 201-216
  • [7] Cho JT(2021)-manifolds J. Geom. Phys. 169 460-474
  • [8] Kimura M(2021)Conformal Ricci soliton and quasi-Yamabe soliton on generalized Sasakian space form Carpathian Math. Publ. 13 647-650
  • [9] Fischer AE(2011)On trans-Sasakian3-manifolds as Chaos Solitons Fractals 44 95-108
  • [10] Ganguly D(2022)-Einstein solitons Note Math. 42 255-306