A convergent finite difference scheme for the Ostrovsky–Hunter equation with Dirichlet boundary conditions

被引:0
|
作者
J. Ridder
A. M. Ruf
机构
[1] Pennsylvania State University,Department of Mathematics
[2] University of Oslo,Department of Mathematics
来源
BIT Numerical Mathematics | 2019年 / 59卷
关键词
Ostrovsky–Hunter equation; Short-pulse equation; Vakhnenko equation; Finite difference methods; Monotone scheme; Existence; Uniqueness; Stability; Convergence; Entropy solution; Dirichlet boundary conditions; 65M06; 35M33; 35L35;
D O I
暂无
中图分类号
学科分类号
摘要
We prove convergence of a finite difference scheme to the unique entropy solution of a general form of the Ostrovsky–Hunter equation on a bounded domain with non-homogeneous Dirichlet boundary conditions. Our scheme is an extension of monotone schemes for conservation laws to the equation at hand. The convergence result at the center of this article also proves existence of entropy solutions for the initial-boundary value problem for the general Ostrovsky–Hunter equation. Additionally, we show uniqueness using Kružkov’s doubling of variables technique. We also include numerical examples to confirm the convergence results and determine rates of convergence experimentally.
引用
收藏
页码:775 / 796
页数:21
相关论文
共 50 条
  • [1] A convergent finite difference scheme for the Ostrovsky-Hunter equation with Dirichlet boundary conditions
    Ridder, J.
    Ruf, A. M.
    BIT NUMERICAL MATHEMATICS, 2019, 59 (03) : 775 - 796
  • [2] A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain
    G. M. Coclite
    J. Ridder
    N. H. Risebro
    BIT Numerical Mathematics, 2017, 57 : 93 - 122
  • [3] A convergent finite difference scheme for the Ostrovsky-Hunter equation on a bounded domain
    Coclite, G. M.
    Ridder, J.
    Risebro, N. H.
    BIT NUMERICAL MATHEMATICS, 2017, 57 (01) : 93 - 122
  • [4] An efficient implementation of fourth-order compact finite difference scheme for Poisson equation with Dirichlet boundary conditions
    Wang, Hanquan
    Zhang, Yong
    Ma, Xiu
    Qiu, Jun
    Liang, Yan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (09) : 1843 - 1860
  • [5] The embedded finite difference method for the Poisson equation in a domain with an irregular boundary and Dirichlet boundary conditions
    Jomaa, Z
    Macaskill, C
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 202 (02) : 488 - 506
  • [6] A convergent finite difference scheme for the variational heat equation
    Giuseppe Maria Coclite
    Johanna Ridder
    Nils Henrik Risebro
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [7] A convergent finite difference scheme for the variational heat equation
    Coclite, Giuseppe Maria
    Ridder, Johanna
    Risebro, Nils Henrik
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (06):
  • [8] Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions
    Guo, Boling
    Xu, Qiang
    Yin, Zhe
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (03) : 403 - 416
  • [9] Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions
    Boling Guo
    Qiang Xu
    Zhe Yin
    Applied Mathematics and Mechanics, 2016, 37 : 403 - 416
  • [10] Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions
    Boling GUO
    Qiang XU
    Zhe YIN
    Applied Mathematics and Mechanics(English Edition), 2016, 37 (03) : 403 - 416