SOR-like Methods for Augmented Systems

被引:0
作者
Gene H. Golub
X. Wu
Jin-Yun Yuan
机构
[1] Stanford University,Department of Computer Science
[2] Hong Kong Baptist University,Department of Mathematics
[3] Centro Politécnico,Departamento de Matemática
来源
BIT Numerical Mathematics | 2001年 / 41卷
关键词
SOR method; SOR-like methods; augmented system; convergence; optimal parameter; Navier-Stokes equation; finite element method; constrained optimization;
D O I
暂无
中图分类号
学科分类号
摘要
Several SOR-like methods are proposed for solving augmented systems. These have many different applications in scientific computing, for example, constrained optimization and the finite element method for solving the Stokes equation. The convergence and the choice of optimal parameter for these algorithms are studied. The convergence and divergence regions for some algorithms are given, and the new algorithms are applied to solve the Stokes equations as well.
引用
收藏
页码:71 / 85
页数:14
相关论文
共 28 条
[1]  
Arioli M.(1989)On the augmented system approach to sparse least-squares problems Numer. Math. 55 667-684
[2]  
Duff I. S.(1994)Solution ofaugm ented linear systems using orthogonal factorization BIT 34 1-24
[3]  
de Rijk P. P. M.(1996)Fast nonsymmetric iterations and preconditioning for Navier-Stokes equations SIAM J. Sci. Comput. 17 33-46
[4]  
Björck Å.(1994)Inexact and preconditioned Uzawa algorithms for saddle point problems SIAM J. Numer. Anal. 31 1645-1661
[5]  
Paige C. C.(1998)Minimum residual methods for augmented systems BIT 38 527-543
[6]  
Elman H.(1998)A generalized successive overrelaxation method for least squares problems BIT 38 347-356
[7]  
Silvester D.(1996)Preconditioned reduced matrices SIAMJ.Matrix Anal. Appl. 17 47-68
[8]  
Elman H.(1973)On the convergence oftwo-stage iterative processes for solving linear equations SIAM J. Numer. Anal. 10 460-469
[9]  
Golub G. H.(1998)Block SOR methods for rank deficient least squares problems J. Comput. Appl. Math. 100 1-9
[10]  
Fischer B.(1999)Preconditioned conjugate gradient methods for rank deficient least squares problems J. Comput. Math. 75 -----