Lamellar phase coexistence induced by electrostatic interactions

被引:0
|
作者
Y. S. Jho
M. W. Kim
S. A. Safran
P. A. Pincus
机构
[1] University of California at Santa Barbara,Materials Research Laboratory
[2] Korea Advanced Institute of Science and Technology,Department of Physics
[3] Weizmann Institute of Science,Department of Materials and Interfaces
来源
The European Physical Journal E | 2010年 / 31卷
关键词
Condensed Phase; Surface Charge Density; Intermembrane Spacing; Equilibrium Distance; Phase Coexistence;
D O I
暂无
中图分类号
学科分类号
摘要
Membranes containing highly charged biomolecules can have a minimal free-energy state at small separations that originates in the strongly correlated electrostatic interactions mediated by counterions. This phenomenon can lead to a condensed, lamellar phase of charged membranes that coexists in thermodynamic equilibrium with a very dilute membrane phase. Although the dilute phase is mostly water, entropy dictates that this phase must contain some membranes and counterions. Thus, electrostatics alone can give rise to the coexistence of a condensed and an unbound lamellar phase. We use numerical simulations to predict the nature of this coexistence when the charge density of the membrane is large, for the case of multivalent counterions and for a membrane charge that is characteristic of biomolecules. We also investigate the effects of counterion size and salt on the two coexisting phases. With increasing salt concentration, we predict that electrostatic screening by salt can destroy the phase separation.
引用
收藏
页码:207 / 214
页数:7
相关论文
共 50 条
  • [1] Phase Coexistence in a Dynamic Phase Diagram
    Gentile, Luigi
    Coppola, Luigi
    Balog, Sandor
    Mortensen, Kell
    Ranieri, Giuseppe A.
    Olsson, Ulf
    CHEMPHYSCHEM, 2015, 16 (11) : 2459 - 2465
  • [2] Model for phase coexistence in phase transitions
    Wang, Y
    Ahuja, R
    Johansson, B
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2004, 97 (06) : 961 - 965
  • [3] Phase coexistence in PZT ceramics
    Soares, MR
    Senos, AMR
    Mantas, PQ
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1999, 19 (10) : 1865 - 1871
  • [4] Phase coexistence near the polymorphic phase boundary
    Torres-Matheus, Oscar A.
    Garcia, R. Edwin
    Bishop, Catherine M.
    ACTA MATERIALIA, 2019, 164 : 577 - 585
  • [5] Phase Coexistence Curve for Isobutanol
    G. V. Stepanov
    A. R. Rasulov
    K. A. Shakhbanov
    L. M. Radzhabova
    High Temperature, 2001, 39 : 322 - 324
  • [6] Phase coexistence curve for isobutanol
    Stepanov, GV
    Rasulov, AR
    Shakhbanov, KA
    Radzhabova, LM
    HIGH TEMPERATURE, 2001, 39 (02) : 322 - 324
  • [7] Phase coexistence far from equilibrium
    Dickman, Ronald
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [8] Phase coexistence of gradient Gibbs states
    Marek Biskup
    Roman Kotecký
    Probability Theory and Related Fields, 2007, 139 : 1 - 39
  • [9] Microstructural phase coexistence kinetics near the polymorphic phase boundary
    Torres-Matheus, Oscar A.
    Garcia, R. Edwin
    Bishop, Catherine M.
    ACTA MATERIALIA, 2021, 206
  • [10] Phase coexistence and dynamic properties of water in nanopores
    I. Brovchenko
    A. Geiger
    A. Oleinikova
    D. Paschek
    The European Physical Journal E, 2003, 12 : 69 - 76