Sharp Rellich-Leray inequality for axisymmetric divergence-free vector fields

被引:0
|
作者
Naoki Hamamoto
机构
[1] Osaka City University,Department of Mathematics
关键词
Primary 35A23; Secondary 26D10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show the N-dimensional Rellich-Leray inequality with optimal constant for axisymmetric and divergence-free vector fields. This is a second-order differential version of the former work by Costin-Maz’ya (Calc Var Partial Differ Equ 32(4):523–532, 2008) on sharp Hardy–Leray inequality for such vector fields. In the proof of our main theorem, we show the vanishing of azimuthal components of axisymmetric vector fields for N≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 4$$\end{document}, from which we also find a partial modification of the best constant derived in Costin-Maz’ya (Calc Var Partial Differ Equ 32(4):523–532, 2008).
引用
收藏
相关论文
共 50 条