On the Waring-Goldbach Problem for One Square and Five Cubes in Short Intervals

被引:0
作者
Fei Xue
Min Zhang
Jinjiang Li
机构
[1] China University of Mining and Technology,Department of Mathematics
[2] Beijing Information Science and Technology University,School of Applied Science
来源
Czechoslovak Mathematical Journal | 2021年 / 71卷
关键词
Waring-Goldbach problem; Hardy-Littlewood method; exponential sum; short interval; 11P05; 11P32; 11P55;
D O I
暂无
中图分类号
学科分类号
摘要
Let N be a sufficiently large integer. We prove that almost all sufficiently large even integers n ∈ [N − 6U, N + 6U] can be represented as {n=p12+p23+p33+p43+p53+p63|p12−N6|≤U,|pi3−N6|≤U,i=2,3,4,5,6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{ {n = p_1^2 + p_2^3 + p_3^3 + p_4^3 + p_5^3 + p_6^3} \hfill \cr {\left| {p_1^2 - {N \over 6}} \right| \le U,\,\,\,\left| {p_i^3 - {N \over 6}} \right| \le U,\,\,\,i = 2,3,4,5,6} \hfill \cr } } \right.$$\end{document} where U = N1−δ+ε with δ ⩽ 8/225.
引用
收藏
页码:563 / 589
页数:26
相关论文
共 14 条
[1]  
Cai Y(2014)The Waring-Goldbach problem: One square and five cubes Ramanujan J 34 57-72
[2]  
Li J(2018)On the Waring-Goldbach problem for one square and five cubes Int. J. Number Theory 14 2425-2440
[3]  
Zhang M(2003)On Lagrange’s theorem with prime variables Q. J. Math 54 453-462
[4]  
Liu J(1965)Representation of integers as sums of six cubes and one square Q. J. Math., Oxf. II. Ser 16 289-296
[5]  
Sinnadurai J S-C L(1930)The representation of a number as the sum of one square and a number of Proc. Lond. Math. Soc. 31 512-553
[6]  
Stanley G K(1931)-th powers J. London Math. Soc 6 194-197
[7]  
Stanley G K(1986)The representation of a number as a sum of squares and cubes Proc. Lond. Math. Soc., III. Ser 52 445-463
[8]  
Vaughan R C(1986)On Waring’s problem for smaller exponents Q. J. Math., Oxf. II. Ser 37 117-127
[9]  
Vaughan R C(1972)On Waring’s problem: One square and five cubes J. Lond. Math. Soc., II. Ser 5 215-218
[10]  
Watson G L(2002)On sums of a square and five cubes Q. J. Math 53 111-118