Minihypers and Linear Codes Meeting the Griesmer Bound: Improvements to Results of Hamada, Helleseth and Maekawa

被引:0
作者
S. Ferret
L. Storme
机构
[1] Ghent University,Dept. of Pure Maths and Computer Algebra
来源
Designs, Codes and Cryptography | 2002年 / 25卷
关键词
minihypers; linear codes; projective spaces; Griesmer bound;
D O I
暂无
中图分类号
学科分类号
摘要
This article improves results of Hamada, Helleseth and Maekawa on minihypers in projective spaces and linear codes meeting the Griesmer bound.In [10,12],it was shown that any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left\{ {\sum\nolimits_{i = 0}^{t - 1} {{\varepsilon }_i {\upsilon }_{i + 1} ,\sum\nolimits_{i = 0}^{t - 1} {{\varepsilon }_i {\upsilon }_i ;t,q} } } \right\}$$ \end{document}-minihyper, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum\nolimits_{i = 0}^{t - 1} {{\varepsilon }_i = h}$$ \end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left( {h - 1} \right)^2 < q$$ \end{document}, is the disjoint union of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${{\varepsilon }_0 }$$ \end{document} points, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${{\varepsilon }_1 }$$ \end{document} lines,..., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $${\varepsilon }_{t - 1} \left( {t - 1} \right)$$ \end{document}-dimensional subspaces. For q large, we improve on this result by increasing the upper bound on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h:\left( 1 \right){\text{ for }}q = p^f ,p{\text{ prime, }}p > 3,{\text{ }}q$$ \end{document} non-square, to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h \leqslant q^{6/9} /\left( {1 + q^{1/9} } \right),\left( 2 \right){\text{ for }}q = p^f$$ \end{document} non-square, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$p = 2,3,{\text{ to }}h \leqslant 2^{ - 1/3} q^{5/9} ,\left( 3 \right){\text{ for }}q = p^f$$ \end{document} square, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$p = 2,3,{\text{ to }}h \leqslant {\text{ min }}\left\{ {2\sqrt q - 1,2^{ - 1/3} q^{5/9} } \right\}$$ \end{document}, and (4) for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$q = p^f$$ \end{document} square, p prime, p<3, to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$h \leqslant {\text{ min }}\left\{ {2\sqrt q - 1,q^{6/9} /\left( {1 + q^{1/9} } \right)} \right\}$$ \end{document}. In the case q non-square, the conclusion is the same as written above; the minihyper is the disjoint union of subspaces. When q is square however, the minihyper is either the disjoint union of subspaces, or the disjoint union of subspaces and one subgeometry \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$PG\left( {l,\sqrt q } \right){\text{ of }}PG\left( {t,q} \right)$$ \end{document}. For the coding-theoretical problem, our results classify the corresponding \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\left[ {n = {\upsilon }_{t + 1} - \sum\nolimits_{i = 0}^{t - 1} {{\varepsilon }_i {\upsilon }_{i + 1} ,k = t + 1,d = q^t - } \sum\nolimits_{i = 0}^{t - 1} {q^i {\varepsilon }_i ;q} } \right]$$ \end{document} codes meeting the Griesmer bound.
引用
收藏
页码:143 / 162
页数:19
相关论文
共 25 条
[1]  
Ball S.(1996)Multiple blocking sets and arcs in finite planes J. London Math. Soc. 54 581-593
[2]  
Belov B. I.(1974)Construction of a class of linear binary codes achieving the Varshamov-Griesmer bound Problems of Info. Transmission 10 211-217
[3]  
Logachev V. N.(1999)Lacunary polynomials, multiple blocking sets and Baer subplanes J. London Math. Soc. 60 321-332
[4]  
Sandimirov V. P.(1992)Polynomial multiplicities over finite fields and intersection sets J. Combin. Theory, Ser. A 60 19-33
[5]  
Blokhuis A.(1960)A bound for error-correcting codes IBM J. Res. Develop. 4 532-542
[6]  
Storme L.(1987)Characterization of minihypers in a finite projective geometry and its applications to error correcting codes Bull. Osaka Women's Univ. 24 1-24
[7]  
Szőnyi T.(1993)A characterization of some [ Discrete Math. 116 229-268
[8]  
Bruen A. A.(1993); J. Combin. Inform. Syst. Sci. 18 161-191
[9]  
Griesmer J. H.(1993)]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry Math. Japonica 38 925-940
[10]  
Hamada N.(2000)A survey of recent work on characterization of minihypers in Computers and Math. 39 159-168