Algorithms for finding maximum transitive subtournaments

被引:0
作者
Lasse Kiviluoto
Patric R. J. Östergård
Vesa P. Vaskelainen
机构
[1] Speago Ltd,Department of Communications and Networking
[2] Aalto University School of Electrical Engineering,undefined
来源
Journal of Combinatorial Optimization | 2016年 / 31卷
关键词
Backtrack search; Clique; Directed acyclic graph; Feedback vertex set; Russian doll search; Transitive tournament;
D O I
暂无
中图分类号
学科分类号
摘要
The problem of finding a maximum clique is a fundamental problem for undirected graphs, and it is natural to ask whether there are analogous computational problems for directed graphs. Such a problem is that of finding a maximum transitive subtournament in a directed graph. A tournament is an orientation of a complete graph; it is transitive if the occurrence of the arcs xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xy$$\end{document} and yz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$yz$$\end{document} implies the occurrence of xz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$xz$$\end{document}. Searching for a maximum transitive subtournament in a directed graph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document} is equivalent to searching for a maximum induced acyclic subgraph in the complement of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}, which in turn is computationally equivalent to searching for a minimum feedback vertex set in the complement of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D$$\end{document}. This paper discusses two backtrack algorithms and a Russian doll search algorithm for finding a maximum transitive subtournament, and reports experimental results of their performance.
引用
收藏
页码:802 / 814
页数:12
相关论文
共 40 条
[1]  
Alon N(1998)On the capacity of digraphs Eur J Combin 19 1-5
[2]  
Berghammer R(2006)Exact computation of minimum feedback vertex sets with relational algebra Fund Inform 70 301-316
[3]  
Fronk A(2006)Clique-detection models in computational biochemistry and genomics Eur J Oper Res 173 1-17
[4]  
Butenko S(1990)An exact algorithm for the maximum clique problem Oper Res Lett 9 375-382
[5]  
Wilhelm WE(1995)An exact algorithm for selecting partial scan flip-flops J Electron Test Theory Appl 7 83-93
[6]  
Carraghan R(1992)Qualitative independence and Sperner problems for directed graphs J Combin Theory Ser A 61 173-192
[7]  
Pardalos PM(2009)Sperner capacity of small digraphs Adv Math Commun 3 125-133
[8]  
Chakradhar ST(2005)Local chromatic number and Sperner capacity J Combin Theory Ser B 95 101-117
[9]  
Balakrishnan A(1988)On locating minimum feedback vertex sets J Comput Syst Sci 37 292-311
[10]  
Agrawal VD(2007)Experimental algorithmics Commun ACM 50 27-31