A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice

被引:0
作者
Suning Gong
Qingqin Nong
Shuyu Bao
Qizhi Fang
Ding-Zhu Du
机构
[1] Ocean University of China,School of Mathematical Science
[2] University of Texas,Department of Computer Science
来源
Journal of Global Optimization | 2023年 / 85卷
关键词
DR-submodular maximization; Knapsack constraint; Integer lattice; Approximation Algorithm; 90C27; 68W25; 68W40;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a knapsack-constrained maximization problem of a nonnegative monotone DR-submodular function f over a bounded integer lattice [B]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\varvec{B}]$$\end{document} in R+n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}_+^n$$\end{document}, max{f(x):x∈[B]and∑i=1nx(i)c(i)≤1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \{f({\varvec{x}}): {\varvec{x}}\in [\varvec{B}] \text {~and~} \sum _{i=1}^n {\varvec{x}}(i)c(i)\le 1\}$$\end{document}, where n is the cardinality of a ground set N and c(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(\cdot )$$\end{document} is a cost function defined on N. Soma and Yoshida [Math. Program., 172 (2018), pp. 539-563] present a (1-e-1-O(ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-e^{-1}-O(\epsilon ))$$\end{document}-approximation algorithm for this problem by combining threshold greedy algorithm with partial element enumeration technique. Although the approximation ratio is almost tight, their algorithm runs in O(n3ϵ3log3τ[log3B∞+nϵlogB∞log1ϵcmin])\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\frac{n^3}{\epsilon ^3}\log ^3 \tau [\log ^3 \left\| \varvec{B}\right\| _\infty + \frac{n}{\epsilon }\log \left\| \varvec{B}\right\| _\infty \log \frac{1}{\epsilon c_{\min }}])$$\end{document} time, where cmin=minic(i)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c_{\min }=\min _i c(i)$$\end{document} and τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is the ratio of the maximum value of f to the minimum nonzero increase in the value of f. Besides, Ene and Nguyeˇ~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{\check{\text {e}}}$$\end{document}n [arXiv:1606.08362, 2016] indirectly give a (1-e-1-O(ϵ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-e^{-1}-O(\epsilon ))$$\end{document}-approximation algorithm with O((1ϵ)O(1/ϵ4)nlog‖B‖∞log2(nlog‖B‖∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O({(\frac{1}{\epsilon })}^{ O(1/\epsilon ^4)}n \log {\Vert \varvec{B}\Vert }_\infty \log ^2{(n \log {\Vert \varvec{B}\Vert }_\infty )})$$\end{document} time. But their algorithm is random. In this paper, we make full use of the DR-submodularity over a bounded integer lattice, carry forward the greedy idea in the continuous process and provide a simple deterministic rounding method so as to obtain a feasible solution of the original problem without loss of objective value. We present a deterministic algorithm and theoretically reduce its running time to a new record, O((1ϵ)O(1/ϵ5)·nlog1cminlog‖B‖∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big ((\frac{1}{\epsilon })^{O({1}/{\epsilon ^5})} \cdot n \log \frac{1}{c_{\min }} \log {\Vert \varvec{B}\Vert _\infty }\big )$$\end{document}, with the same approximate ratio.
引用
收藏
页码:15 / 38
页数:23
相关论文
共 36 条
[1]  
Ageev AA(2004)Pipage rounding: a new method of constructing algorithms with proven performance guarantee J. Comb. Optim. 8 307-328
[2]  
Sviridenko MI(2011)Maximizing a monotone submodular function subject to a matroid constraint SIAM J. Comput. 40 1740-1766
[3]  
Calinescu G(2014)Submodular function maximization via the multilinear relaxation and contention resolution schemes SIAM J. Comput. 43 1831-1879
[4]  
Chekuri C(2011)Maximizing non-monotone submodular functions SIAM J. Comput. 40 1133-1153
[5]  
Pál M(2009)Maximization of submodular functions: Theory and enumeration algorithms Eur. J. Oper. Res. 198 102-112
[6]  
Vondrák J(1999)The budgeted maximum coverage problem Inf. Process. Lett. 70 39-45
[7]  
Chekuri C(2008)Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies J. Mach. Learn. Res. 9 235-284
[8]  
Vondrák J(2013)Approximations for monotone and nonmonotone submodular maximization with knapsack constraints Math. Oper. Res. 38 729-739
[9]  
Zenklusen R(2019)Subspace selection via DR-submodular maximization on lattices Proceedings of the AAAI Conference on Artificial Intelligence 33 4618-4625
[10]  
Feige U(1978)Best algorithms for approximating the maximum of a submodular set function Math. Oper. Res. 3 177-188