A note on commutator subgroups in groups of large cardinality

被引:0
作者
Maria De Falco
Francesco de Giovanni
Carmela Musella
机构
[1] Università di Napoli Federico II,Dipartimento di Matematica e Applicazioni
[2] Complesso Universitario Monte S. Angelo,undefined
来源
Monatshefte für Mathematik | 2020年 / 191卷
关键词
Uncountable group; Commutator subgroup; Normality; 20F14;
D O I
暂无
中图分类号
学科分类号
摘要
If G is an uncountable group of regular cardinality ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}, we shall denote by LLℵ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {L}L}_\aleph (G)$$\end{document} the set of all subgroups of G of cardinality ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}. The aim of this paper is to describe the behaviour of groups G for which the set Cℵ(G)={X′|X∈LLℵ(G)}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {C}}}_\aleph (G)=\{ X'\;|\; X\in {\mathfrak {L}L}_\aleph (G)\}$$\end{document} is finite, at least when G is locally graded and has no simple sections of cardinality ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}. Among other results, it is proved that such a group has a finite commutator subgroup, provided that it contains an abelian subgroup of cardinality ℵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\aleph $$\end{document}.
引用
收藏
页码:249 / 256
页数:7
相关论文
共 24 条
[1]  
Brendle J(1993)Set-theoretic aspects of periodic J. Algebra 162 259-286
[2]  
De Falco M(2018)-groups—extraspecial Ann. Mat. Pura Appl. 197 1417-1427
[3]  
Evans MJ(2017)-groups and Kurepa trees Adv. Group Theory Appl. 3 13-29
[4]  
de Giovanni F(1972)Permutability in uncountable groups Kon. Nederl. Akad. Wet. A 75 202-209
[5]  
Musella C(2005)Normality in uncountable groups J. London Math. Soc. 71 658-668
[6]  
De Falco M(2016)Do infinite nilpotent groups always have equipotent abelian subgroups? J. Algebra 447 383-396
[7]  
de Giovanni F(2017)Groups with finitely many derived subgroups J. Austral. Math. Soc. 103 59-69
[8]  
Heineken H(1956)Uncountable groups with restrictions on subgroups of large cardinality Proc. Camb. Philos. Soc. 52 611-616
[9]  
Musella C(1995)Nilpotency in uncountable groups Rend. Sem. Mat. Univ. Padova 94 275-277
[10]  
Ehrenfeucht A(1954)Finite-by-nilpotent groups J. London Math. Soc. 29 236-248