The sharp bounds on general sum-connectivity index of four operations on graphs

被引:0
作者
Shehnaz Akhter
Muhammad Imran
机构
[1] National University of Sciences and Technology (NUST),Department of Mathematics, School of Natural Sciences (SNS)
[2] United Arab Emirates University,Department of Mathematical Sciences, College of Science
来源
Journal of Inequalities and Applications | / 2016卷
关键词
general sum-connectivity index; operation on graphs; cartesian product; total graph; 05C12; 05C90;
D O I
暂无
中图分类号
学科分类号
摘要
The general sum-connectivity index χα(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\chi_{\alpha}(G)$\end{document}, for a (molecular) graph G, is defined as the sum of the weights (dG(a1)+dG(a2))α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(d_{G}(a_{1})+d_{G}(a_{2}))^{\alpha}$\end{document} of all a1a2∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{1}a_{2}\in E(G)$\end{document}, where dG(a1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{G}(a_{1})$\end{document} (or dG(a2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$d_{G}(a_{2})$\end{document}) denotes the degree of a vertex a1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{1}$\end{document} (or a2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$a_{2}$\end{document}) in the graph G; E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E(G)$\end{document} denotes the set of edges of G, and α is an arbitrary real number. Eliasi and Taeri (Discrete Appl. Math. 157:794-803, 2009) introduced four new operations based on the graphs S(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$S(G)$\end{document}, R(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$R(G)$\end{document}, Q(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$Q(G)$\end{document}, and T(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T(G)$\end{document}, and they also computed the Wiener index of these graph operations in terms of W(F(G))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W(F(G))$\end{document} and W(H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$W(H)$\end{document}, where F is one of the symbols S, R, Q, T. The aim of this paper is to obtain sharp bounds on the general sum-connectivity index of the four operations on graphs.
引用
收藏
相关论文
共 36 条
[1]  
Eliasi M(2009)Four new sums of graphs and their Wiener indices Discrete Appl. Math. 157 794-803
[2]  
Taeri B(1972)Graph theory and molecular orbitals. Total Chem. Phys. Lett. 17 535-538
[3]  
Gutman I(1975)-electron energy of alternant hydrocarbons J. Am. Chem. Soc. 97 6609-6615
[4]  
Trinajstić N(2009)On characterization of molecular branching J. Math. Chem. 46 1252-1270
[5]  
Randić M(2010)On a novel connectivity index J. Math. Chem. 47 210-218
[6]  
Zhou B(2009)On general sum-connectivity index Chem. Phys. Lett. 475 146-148
[7]  
Trinajstić N(2016)Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons Can. J. Chem. 94 559-565
[8]  
Zhou B(2009)On degree based topological descriptors of strong product graphs Discrete Appl. Math. 157 804-811
[9]  
Trinajstić N(2004)The first and second Zagreb indices of some graph operations MATCH Commun. Math. Comput. Chem. 52 113-118
[10]  
Lučić B(2011)Zagreb indices Appl. Math. Lett. 24 402-405