Integration of the Loaded KdV Equation with a Self-Consistent Source of Integral Type in the Class of Rapidly Decreasing Complex-Valued Functions

被引:0
作者
Hoitmetov U.A. [1 ]
机构
[1] Khorezm Branch of the Romanovskii Institute of Mathematics, Urgench StateUniversity, Urgench
关键词
Gel’fand–Levitan–Marchenko integral equation; inverse problem of scattering theory; Jost solutions; loaded Korteweg–de Vries equation; scattering data; Sturm–Liouville operator;
D O I
10.1134/S1055134422020043
中图分类号
学科分类号
摘要
Abstract: We apply the inverse scattering method to integrating the loaded Korteweg–de Vriesequation with a self-consistent source of integral type in the class of rapidly decreasingcomplex-valued functions. © 2022, Pleiades Publishing, Ltd.
引用
收藏
页码:102 / 114
页数:12
相关论文
共 19 条
[1]  
Blashchak V.A., An analog of the inverse problem in the theory of scattering for a non-self-conjugate operator. I, Differ. Equ., 4, (1968)
[2]  
Blashchak V.A., An analog of the inverse problem in the theory of scattering for a non-self-conjugate operator. II,” Differ. Uravn. 4, Differ. Equ, 4, (1968)
[3]  
Faddeev L.D., Properties of the S-matrix of the one-dimensional Schrödinger equation,”, Tr. Mat. Inst. Steklova, 73, (1964)
[4]  
Gardner C.S., Greene I.M., Kruskal M.D., Miura R.M., Method for solving the Korteweg–de Vries equation, Phys. Rev. Lett. No., 19, (1967)
[5]  
Hoitmetov U.A., Integration of the general KdV with a self-consistent source of integral type, Dokl. AN RTadj., 50, (2007)
[6]  
Khasanov A.B., Khoitmetov U.A., On integration of Korteweg–de Vries equation in a class of rapidly decreasing complex-valued functions, Russ. Math., 62, (2018)
[7]  
Khasanov A.B., Matyakubov M.M., Integration of the nonlinear Korteweg–de Vries equation with an additional term, Theor. Math. Phys., 203, (2020)
[8]  
Kneser A., Belastete Integralgleichungen, Rend. Circ. Mat. Palermo., 37, (1914)
[9]  
Kozhanov A.I., Nonlinear loaded equations and inverse problems, Comput. Math. Math. Phys., 44, (2004)
[10]  
Lax P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21, (1968)