Gravitational Faraday effect from on-shell amplitudes

被引:0
作者
Wei-Ming Chen
Ming-Zhi Chung
Yu-tin Huang
Jung-Wook Kim
机构
[1] Kobe University,Department of Physics
[2] National Taiwan University,Department of Physics and Astronomy
[3] Physics Division,Centre for Theoretical Physics, Department of Physics and Astronomy
[4] National Center for Theoretical Sciences,Kavli Institute for Theoretical Physics
[5] Queen Mary University of London,undefined
[6] University of California,undefined
来源
Journal of High Energy Physics | / 2022卷
关键词
Black Holes; Classical Theories of Gravity; Scattering Amplitudes;
D O I
暂无
中图分类号
学科分类号
摘要
Effects of massive object’s spin on massive-massless 2 → 2 classical scattering is studied. Focus is set on the less-considered dimensionless expansion parameter λ/b, where λ is the massless particle’s wavelength and b is the impact parameter. Corrections in λ/b start to appear from O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(G2), with leading correction terms tied to the gravitational Faraday effect, which is a special case of the Lense-Thirring effect. We compute the eikonal phase up to O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(G2) and extract spin effect on the scattering angle and time delay up to 14th order in spin. The gravitational Faraday effect at linear order in spin [1] is reproduced by λ/b correction terms, which we compute to higher orders in spin. We find that the equivalence principle, or universality, holds up to NLO for general spinning bodies, i.e. away from geometric optics limit. Furthermore, in the black hole limit, we confirm the absence of particular spin structure observed [2–8], along with the associated shift symmetry [7], and argue that it holds to arbitrary spin order at O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(G2) in the massless probe limit.
引用
收藏
相关论文
共 144 条
  • [1] Aoude R(2021)( JHEP 03 097-undefined
  • [2] Haddad K(2021)) JHEP 07 037-undefined
  • [3] Helset A(2022) 2 JHEP 08 148-undefined
  • [4] Kosmopoulos D(2022) 2 JHEP 07 072-undefined
  • [5] Luna A(1956) ≤ 5 Nuovo Cim. 4 898-undefined
  • [6] Chen W-M(1959)2 Nuovo Cim. 13 469-undefined
  • [7] Chung M-Z(1960)( Annals Phys. 11 169-undefined
  • [8] Huang Y-T(1979)) Lett. Nuovo Cim. 26 573-undefined
  • [9] Kim J-W(1980)undefined J. Phys. A 13 3677-undefined
  • [10] Aoude R(1981)undefined Gen. Rel. Grav. 13 963-undefined