Preoperative CT-based radiomic prognostic index to predict the benefit of postoperative radiotherapy in patients with non-small cell lung cancer: a multicenter study

被引:5
作者
Ma, Zeliang [1 ]
Men, Yu [2 ]
Liu, Yunsong [1 ]
Bao, Yongxing [1 ]
Liu, Qian [1 ]
Yang, Xu [3 ]
Wang, Jianyang [1 ]
Deng, Lei [1 ]
Zhai, Yirui [1 ]
Bi, Nan [1 ]
Wang, Luhua [1 ]
Hui, Zhouguang [2 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Canc, Natl Canc Ctr, Dept Radiat Oncol,Canc Hosp, Beijing, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Canc, Natl Canc Ctr, Dept VIP Med Serv,Canc Hosp, Beijing, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Canc, Natl Canc Ctr, Dept Med Oncol,Canc Hosp, Beijing, Peoples R China
关键词
Radiomics; Radiotherapy; Survival; Non-small cell lung cancer; CT; ADJUVANT CHEMOTHERAPY; RADIATION-THERAPY; LYMPH-NODES; MUTATIONS; CARCINOMA; SURVIVAL; SURGERY; NSCLC;
D O I
10.1186/s40644-024-00707-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background The value of postoperative radiotherapy (PORT) for patients with non-small cell lung cancer (NSCLC) remains controversial. A subset of patients may benefit from PORT. We aimed to identify patients with NSCLC who could benefit from PORT.Methods Patients from cohorts 1 and 2 with pathological Tany N2 M0 NSCLC were included, as well as patients with non-metastatic NSCLC from cohorts 3 to 6. The radiomic prognostic index (RPI) was developed using radiomic texture features extracted from the primary lung nodule in preoperative chest CT scans in cohort 1 and validated in other cohorts. We employed a least absolute shrinkage and selection operator-Cox regularisation model for data dimension reduction, feature selection, and the construction of the RPI. We created a lymph-radiomic prognostic index (LRPI) by combining RPI and positive lymph node number (PLN). We compared the outcomes of patients who received PORT against those who did not in the subgroups determined by the LRPI.Results In total, 228, 1003, 144, 422, 19, and 21 patients were eligible in cohorts 1-6. RPI predicted overall survival (OS) in all six cohorts: cohort 1 (HR = 2.31, 95% CI: 1.18-4.52), cohort 2 (HR = 1.64, 95% CI: 1.26-2.14), cohort 3 (HR = 2.53, 95% CI: 1.45-4.3), cohort 4 (HR = 1.24, 95% CI: 1.01-1.52), cohort 5 (HR = 2.56, 95% CI: 0.73-9.02), cohort 6 (HR = 2.30, 95% CI: 0.53-10.03). LRPI predicted OS (C-index: 0.68, 95% CI: 0.60-0.75) better than the pT stage (C-index: 0.57, 95% CI: 0.50-0.63), pT + PLN (C-index: 0.58, 95% CI: 0.46-0.70), and RPI (C-index: 0.65, 95% CI: 0.54-0.75). The LRPI was used to categorize individuals into three risk groups; patients in the moderate-risk group benefited from PORT (HR = 0.60, 95% CI: 0.40-0.91; p = 0.02), while patients in the low-risk and high-risk groups did not.Conclusions We developed preoperative CT-based radiomic and lymph-radiomic prognostic indexes capable of predicting OS and the benefits of PORT for patients with NSCLC.
引用
收藏
页数:11
相关论文
共 49 条
[1]  
[Anonymous], 2023, GEO Accession viewer
[2]  
[Anonymous], 2023, The Cancer Genome Atlas Lung Squamous Cell Carcinoma Collection (TCGA-LUSC) - The Cancer Imaging Archive (TCIA) Public Access
[3]   Postoperative radiotherapy improves survival of patients with ypN2 non-small cell lung cancer after neoadjuvant chemotherapy followed by surgery - A propensity score matching study of the Surveillance, Epidemiology, and End Results database [J].
Bao, Yongxing ;
Yang, Xu ;
Men, Yu ;
Kang, Jingjing ;
Sun, Xin ;
Zhao, Maoyuan ;
Sun, Shuang ;
Yuan, Meng ;
Ma, Zeliang ;
Hui, Zhouguang .
THORACIC CANCER, 2022, 13 (03) :404-411
[4]   KEAP1/NFE2L2 Mutations Predict Lung Cancer Radiation Resistance That Can Be Targeted by Glutaminase Inhibition [J].
Binkley, Michael S. ;
Jeon, Young-Jun ;
Nesselbush, Monica ;
Moding, Everett J. ;
Nabet, Barzin Y. ;
Almanza, Diego ;
Kunder, Christian ;
Stehr, Henning ;
Yoo, Christopher H. ;
Rhee, Siyeon ;
Xiang, Michael ;
Chabon, Jacob J. ;
Hamilton, Emily ;
Kurtz, David M. ;
Gojenola, Linda ;
Owen, Susie Grant ;
Ko, Ryan B. ;
Shin, June Ho ;
Maxim, Peter G. ;
Lui, Natalie S. ;
Backhus, Leah M. ;
Berry, Mark F. ;
Shrager, Joseph B. ;
Ramchandran, Kavitha J. ;
Padda, Sukhmani K. ;
Das, Millie ;
Neal, Joel W. ;
Wakelee, Heather A. ;
Alizadeh, Ash A. ;
Loo, Billy W. ;
Diehn, Maximilian .
CANCER DISCOVERY, 2020, 10 (12) :1826-1841
[5]   Mediastinal Up-Staging During Surgery in Non-Small-Cell Lung Cancer: Which Mediastinal Lymph Node Metastasis Patterns Better Predict The Outcome? A Multicenter Analysis [J].
Chiappetta, Marco ;
Leuzzi, Giovanni ;
Sperduti, Isabella ;
Bria, Emilio ;
Mucilli, Felice ;
Lococo, Filippo ;
Filosso, Pier Luigi ;
Ratto, Giovanni Battista ;
Spaggiari, Lorenzo ;
Facciolo, Francesco .
CLINICAL LUNG CANCER, 2020, 21 (05) :464-+
[6]   Prediction of visceral pleural invasion in lung cancer on CT: deep learning model achieves a radiologist-level performance with adaptive sensitivity and specificity to clinical needs [J].
Choi, Hyewon ;
Kim, Hyungjin ;
Hong, Wonju ;
Park, Jongsoo ;
Hwang, Eui Jin ;
Park, Chang Min ;
Kim, Young Tae ;
Goo, Jin Mo .
EUROPEAN RADIOLOGY, 2021, 31 (05) :2866-2876
[7]   Deep Learning Analysis of CT Images Reveals High-Grade Pathological Features to Predict Survival in Lung Adenocarcinoma [J].
Choi, Yeonu ;
Aum, Jaehong ;
Lee, Se-Hoon ;
Kim, Hong-Kwan ;
Kim, Jhingook ;
Shin, Seunghwan ;
Jeong, Ji Yun ;
Ock, Chan-Young ;
Lee, Ho Yun .
CANCERS, 2021, 13 (16)
[8]   Radiomic-Based Pathological Response Prediction from Primary Tumors and Lymph Nodes in NSCLC [J].
Coroller, Thibaud P. ;
Agrawal, Vishesh ;
Huynh, Elizabeth ;
Narayan, Vivek ;
Lee, Stephanie W. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (03) :467-476
[9]   Postoperative Radiotherapy for Resected Pathological Stage IIIA-N2 Non-Small Cell Lung Cancer: A Retrospective Study of 221 Cases from a Single Institution [J].
Dai, Honghai ;
Hui, Zhouguang ;
Ji, Wei ;
Liang, Jun ;
Lu, Jima ;
Ou, Guangfei ;
Zhou, Zongmei ;
Feng, Qinfu ;
Xiao, Zefen ;
Chen, Dongfu ;
Zhang, Hongxing ;
Yin, Weibo ;
He, Jie ;
Wang, Luhua .
ONCOLOGIST, 2011, 16 (05) :641-650
[10]   Survival Patterns for Patients with Resected N2 Non-Small Cell Lung Cancer and Postoperative Radiotherapy: A Prognostic Scoring Model and Heat Map Approach [J].
Deng, Weiye ;
Xu, Ting ;
Xu, Yujin ;
Wang, Yifan ;
Liu, Xiangyu ;
Zhao, Yu ;
Yang, Pei ;
Liao, Zhongxing .
JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (12) :1968-1974