共 46 条
[1]
Akram U.M., Khan S.A., Automated detection of dark and bright lesions in retinal images for early detection of diabetic retinopathy, J Med Syst, 36, 5, pp. 3151-3162, (2012)
[2]
Alfian G., Syafrudin M., Fitriyani N.L., Anshari M., Stasa P., Svub J., Rhee J., Deep neural network for predicting diabetic retinopathy from risk factors, Mathematics, 8, 9, (2020)
[3]
Alyoubi W.L., Shalash W.M., Abulkhair M.F., Diabetic retinopathy detection through deep learning techniques: a review, Inform Med Unlock, 20, (2020)
[4]
Anandakumar H., Umamaheswari K., A bio-inspired swarm intelligence technique for social aware cognitive radio handovers, Comput Electr Eng, 71, pp. 925-937, (2018)
[5]
Antal B., Hajdu A., An ensemble-based system for microaneurysm detection and diabetic retinopathy grading, IEEE Trans Biomed Eng, 59, 6, pp. 1720-1726, (2012)
[6]
Blindness Detection Challenge, (2019)
[7]
Argade K.S., Deshmukh K.A., Narkhede M.M., Sonawane N.N., Jore S., Automatic detection of diabetic retinopathy using image processing and data mining techniques, 2015 International Conference on green computing and Internet of Things (ICGCIoT), pp. 517-521, (2015)
[8]
Biswal B., Biswal P.K., Robust classification of neovascularization using random forest classifier via convoluted vascular network, Biomed Signal Process Control, 66, (2021)
[9]
Bodapati J.D., Shaik N.S., Naralasetti V., Composite deep neural network with gated-attention mechanism for diabetic retinopathy severity classification, J Ambient Intell Humaniz Comput, 12, 10, pp. 9825-9839, (2021)
[10]
Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P., SMOTE: synthetic minority over-sampling technique, J Artif Intell Res, 16, pp. 321-357, (2002)