Significance analysis of microarray transcript levels in time series experiments

被引:0
作者
Barbara Di Camillo
Gianna Toffolo
Sreekumaran K Nair
Laura J Greenlund
Claudio Cobelli
机构
[1] University of Padova,Information Engineering Department
[2] Mayo Clinic,Endocrinology Division
来源
BMC Bioinformatics | / 8卷
关键词
Time Series; False Discovery Rate; Short Time Series; Time Series Experiment; Affymetrix Chip;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 45 条
  • [1] Cui X(2003)Statistical tests for differential expression in cDNA microarray experiments Genome Biol 4 210-5121
  • [2] Churchill GA(2001)Significane Analysis of Microarrays Applied to the Ionizing Radiation Response PNAS 98 5116-703
  • [3] Tusher GT(2003)Statistical tests for identifying differentially expressed genes in time-course microarray experiments Bioinformatics 19 694-4790
  • [4] Tibshirani R(2003)Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses Nucleic Acids Res 31 4779-1985
  • [5] Chu G(2002)A regression-based method to identify differentially expressed genes in microarray time course studies and its application in an inducible Huntington's disease transgenic model Human Molecular Genetics 11 1977-12842
  • [6] Park T(2005)Significance analysis of time course microarray experiments PNAS 102 12837-264
  • [7] Yi SG(2003)Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data Biostatistics 4 249-14036
  • [8] Lee S(2002)Quantitative Noise Analysis for gene expression microarray experiment PNAS 99 14031-300
  • [9] Lee SY(1995)Controlling the False Discovery Rate: a Practical and Powerful Approach to multiple testing J R Statist SocB 57 289-9445
  • [10] Yoo DH(2003)Statistical significance for genomewide studies PNAS 100 9440-498