MDS and near-MDS codes via twisted Reed–Solomon codes

被引:0
作者
Junzhen Sui
Xiaomeng Zhu
Xueying Shi
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Computer Science and Technology
[2] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[3] Taizhou University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
MDS codes; NMDS codes; Twisted Reed–Solomon codes; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. Twisted Reed–Solomon codes come from Reed–Solomon codes by adding a monomial. In this paper, we give a necessary and sufficient condition that twisted Reed–Solomon codes are MDS (near-MDS). Moreover, we prove that a lot of MDS codes, which are constructed via twisted Reed–Solomon codes, are not equivalent to Reed–Solomon codes.
引用
收藏
页码:1937 / 1958
页数:21
相关论文
共 59 条
[41]  
Renner J(undefined)undefined undefined undefined undefined-undefined
[42]  
Liu H(undefined)undefined undefined undefined undefined-undefined
[43]  
Liu S(undefined)undefined undefined undefined undefined-undefined
[44]  
Niu Y(undefined)undefined undefined undefined undefined-undefined
[45]  
Yue Q(undefined)undefined undefined undefined undefined-undefined
[46]  
Wu Y(undefined)undefined undefined undefined undefined-undefined
[47]  
Hu L(undefined)undefined undefined undefined undefined-undefined
[48]  
Rawat AS(undefined)undefined undefined undefined undefined-undefined
[49]  
Tamo I(undefined)undefined undefined undefined undefined-undefined
[50]  
Guruswami V(undefined)undefined undefined undefined undefined-undefined