MDS and near-MDS codes via twisted Reed–Solomon codes

被引:0
作者
Junzhen Sui
Xiaomeng Zhu
Xueying Shi
机构
[1] Nanjing University of Aeronautics and Astronautics,College of Computer Science and Technology
[2] Nanjing University of Aeronautics and Astronautics,Department of Mathematics
[3] Taizhou University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2022年 / 90卷
关键词
MDS codes; NMDS codes; Twisted Reed–Solomon codes; 94B05;
D O I
暂无
中图分类号
学科分类号
摘要
Maximum distance separable (MDS) codes are optimal in the sense that the minimum distance cannot be improved for a given length and code size. Twisted Reed–Solomon codes come from Reed–Solomon codes by adding a monomial. In this paper, we give a necessary and sufficient condition that twisted Reed–Solomon codes are MDS (near-MDS). Moreover, we prove that a lot of MDS codes, which are constructed via twisted Reed–Solomon codes, are not equivalent to Reed–Solomon codes.
引用
收藏
页码:1937 / 1958
页数:21
相关论文
共 59 条
[1]  
Bartoli D(2015)On the covering radius of MDS codes IEEE Trans. Inf. Theory 61 801-811
[2]  
Giulietti M(1999)On lowest density MDS codes IEEE Trans. Inf. Theory 45 46-59
[3]  
Platoni I(2015)Application of constacyclic codes to quantum MDS codes IEEE Trans. Inf. Theory 61 1474-1484
[4]  
Blaum M(2014)Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon codes Des. Codes Cryptogr. 73 641-666
[5]  
Roth RM(1995)On near-MDS codes J. Geom. 54 30-43
[6]  
Chen B(2000)Near-MDS codes over some small fields Discret. Math. 213 55-65
[7]  
Ling S(2011)The weights in MDS codes IEEE Trans. Inf. Theory 57 392-396
[8]  
Zhang G(2019)New constructions of MDS Euclidean self-dual codes from GRS codes and extended GRS codes IEEE Trans. Inf. Theory 65 5574-5579
[9]  
Couvreur A(2019)Some new constructions of quantum MDS codes IEEE Trans. Inf. Theory 65 7840-7847
[10]  
Gaborit P(2021)Hulls of generalized Reed-Solomon codes via Goppa codes and their applications to quantum codes IEEE Trans. Inf. Theory 67 6619-6626