Building blocks of amplified endomorphisms of normal projective varieties

被引:0
|
作者
Sheng Meng
机构
[1] National University of Singapore,Department of Mathematics
来源
Mathematische Zeitschrift | 2020年 / 294卷
关键词
Amplified endomorphism; Iteration; Equivariant MMP; -abelian variety; Albanese morphism; Albanese map; MRC fibration; 14E30; 32H50; 08A35;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a normal projective variety. A surjective endomorphism f:X→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f{:}X\rightarrow X$$\end{document} is int-amplified if f∗L-L=H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^*L - L =H$$\end{document} for some ample Cartier divisors L and H. This is a generalization of the so-called polarized endomorphism which requires that f∗H∼qH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f^*H\sim qH$$\end{document} for some ample Cartier divisor H and q>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>1$$\end{document}. We show that this generalization keeps all nice properties of the polarized case in terms of the singularity, canonical divisor, and equivariant minimal model program.
引用
收藏
页码:1727 / 1747
页数:20
相关论文
共 50 条