Flow and Heat Transfer of a Second Grade Fluid Between Two Stretchable Rotating Disks

被引:0
作者
Abhijit Das
Bikash Sahoo
机构
[1] National Institute of Technology Rourkela,Department of Mathematics
来源
Bulletin of the Brazilian Mathematical Society, New Series | 2018年 / 49卷
关键词
Reynolds number; Radial stretching; HAM; Second Grade fluid; Heat transfer;
D O I
暂无
中图分类号
学科分类号
摘要
The steady laminar flow and heat transfer of a non-Newtonian second grade fluid between two stretchable, co-axially rotating disks is considered. Using similarity transformations, partial differential equations governing the flow, are reduced to a set of highly coupled and nonlinear ordinary differential equations. These developed nonlinear equations are then integrated analytically using an effective analytical method called homotopy analysis method to obtain series solutions. The convergence of the obtained series solutions are also analyzed. Results obtained using 20th-order homotopy approximations, for different cases, such as the disks rotating in same (opposite) sense with same (different) angular velocities are shown graphically and discussed in detail for various parameters of interest, such as, stretching parameter, Reynolds number, non-Newtonian viscoelastic parameter. Of particular interest are the values of F′′(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F''(0)$$\end{document} and -G′(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-G'(0)$$\end{document}. And -G′(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-G'(0)$$\end{document} found to be decreasing function of the non-Newtonian viscoelastic parameter K whereas the values of F′′(0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F''(0)$$\end{document} decreases with K, except when both the disk stretches and Ω=0,0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega =0, 0.5$$\end{document}.
引用
收藏
页码:531 / 547
页数:16
相关论文
共 55 条
[1]  
Abbas Z(2008)Unsteady flow of a second grade fluid film over an unsteady stretching sheet Math. Comput. Model. 48 518-526
[2]  
Hayat T(1951)Note on a class of solutions of the Navier–Stokes equations representing steady rotationally-symmetric flow Q. J. Mech. Appl. Math. 4 29-41
[3]  
Sajid M(1981)Flow between caoxial rotating disks: with and without externally applied magnetic field Int. J. Math. Math. Sci. 4 181-200
[4]  
Asghar S(2013)Boundary layer slip flow and heat transfer past a stretching sheet with temperature dependent viscosity Thermal. Energy Power. Eng. 2 38-43
[5]  
Batchelor GK(2015)Analytical solution to the flow between two coaxial rotating disks using HAM Proc. Eng. 127 377-382
[6]  
Bhatnagar RK(2010)On explicit, purely analytic solutions of off-centered stagnation flow towards a rotating disc by means of HAM Nonlinear Anal. Real World Appl. 11 3389-3398
[7]  
Bhattacharyya K(1995)Fluids of differential type: critical review and thermodynamic analysis Int. J. Eng. Sci. 33 689-377
[8]  
Layek GC(1972)Numerical studies of flow between rotating coaxial disks IMA J. Appl. Math. 9 370-779
[9]  
Gorla RSR(2014)Laminar flow and heat transfer of nanofluid between contracting and rotating disks by least square method Powder Technol. 253 769-405
[10]  
Das A(2005)Homotopy solutions for a generalized second-grade fluid past a porous plate Nonlinear Dyn. 42 395-414