On Positive Periodic Solutions for Nonlinear Delayed Differential Equations

被引:1
作者
D. D. Hai
C. Qian
机构
[1] Mississippi State University,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2016年 / 13卷
关键词
34K13; 34L30;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of positive ω-periodic solutions for the delayed differential equation x′(t)=a(t)g(x(t))x(t)-λb(t)f(x(t-τ(t))),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^{\prime}(t) = a(t)g(x(t))x(t) - \lambda b(t)f(x(t - \tau (t))),$$\end{document}where λ is a positive parameter, a,b,τ∈C(R,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a,b,\tau \in C(\mathbb{R},\mathbb{R})}$$\end{document} are ω-periodic functions with a,b≥0,a,b≢0,f,g∈C([0,∞),[0,∞))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${a,b\geq 0,a,b \not \equiv 0,f,g\in C([0,\infty ),[0,\infty ))}$$\end{document}, g does not need to be bounded above or bounded away from 0, and g(0) = 0 is allowed.
引用
收藏
页码:1641 / 1651
页数:10
相关论文
共 18 条
[1]  
Chow S.N.(1974)Existence of periodic solutions of autonomous functional differential equations J. Differ. Equ. 15 350-378
[2]  
Freedman H.I.(1992)Periodic solutions of single-species models with periodic delay SIAM J. Math. Anal. 23 689-701
[3]  
Wu J.(1977)Fixed point techniques in a cone with applications J. Math. Anal. Appl. 61 58-71
[4]  
Gatica J.A.(2011)Existence of multiple periodic solutions of first order functional differential equations Math. Compt. Model. 54 2962-2968
[5]  
Smith H.L.(1980)Nicholson’s blowflies revisited Nature 287 17-21
[6]  
Graef J.R.(2010)A note on positive periodic solutions of delayed differential equations Appl. Math. Lett. 23 581-584
[7]  
Kong L.(2011)Existence of positive periodic solutions of nonlinear first-order delayed differential equations J. Math. Anal. Appl. 384 527-535
[8]  
Gurney W.S.(1997)Oscillations and chaos in physiological control systems Science 197 287-289
[9]  
Blythe S.P.(2004)Positive periodic solutions of functional differential equations J. Differ. Equ. 202 354-366
[10]  
Nisbet R.N.(undefined)undefined undefined undefined undefined-undefined