Blow-up of Solutions for a System of Higher-Order Nonlinear Kirchhoff-Type Equations

被引:0
作者
Yaojun Ye
机构
[1] Zhejiang University of Science and Technology,Department of Mathematics and Information Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2017年 / 40卷
关键词
Higher-order Kirchhoff-type equations; Initial-boundary value problem; Blow-up; 35G20; 35L55; 35L75; 35L80;
D O I
暂无
中图分类号
学科分类号
摘要
The initial-boundary value problem for a system of higher-order nonlinear Kirchhoff-type equations with damping and source terms in bounded domain is studied. We prove a global nonexistence result for certain solutions under positive initial energy.
引用
收藏
页码:665 / 677
页数:12
相关论文
共 35 条
  • [1] Autuori G(2009)Asymptotic stability for nonlinear Kirchhoff systems Nonlinear Anal. RWA 10 889-909
  • [2] Pucci P(2006)Exponential energy decay estimates for the solutions of Appl. Math. Comput. 177 235-242
  • [3] Salvatori MC(2006)-dimensional Kirchhoff type wave equation Nonlinearity 19 1495-1506
  • [4] Gorain GC(2003)Smooth attractors for strongly damped wave equations Nonlinear Anal. 53 453-466
  • [5] Pata V(2004)Blow-up and critical exponents for nonlinear hyperbolic equations Appl. Math. Lett. 17 1409-1414
  • [6] Zelik S(2007)Global existence and blow-up of solutions for a higher-order Kirchhoff-type equation with nonlinear dissipation Appl. Math. Lett. 20 866-871
  • [7] Galaktionov VA(2013)A blow-up result for a higher-order nonlinear Kirchhoff-type hyperbolic equation Nonlinear Anal. RWA 14 2059-2067
  • [8] Pohozaev SI(1968)Global existence and energy decay estimate of solutions for a higher-order Kirchhoff type equation with damping and source term J. Sound Vib. 8 134-146
  • [9] Li FC(1998)Nonlinear vibration of an elastic string J. Korean Math. Soc. 35 465-489
  • [10] Messaoudi SA(1998)On the existence of solutions of the degenerate wave equations with nonlinear damping terms Nihonkai Math. J. 9 27-46