Constant diameter and constant width of spherical convex bodies

被引:0
作者
Huhe Han
Denghui Wu
机构
[1] Northwest A&F University,College of Science
来源
Aequationes mathematicae | 2021年 / 95卷
关键词
Constant width; Constant diameter; Polar set; Spherical convex body; 52A55; 52A30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we show that a spherical convex body C is of constant diameter τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} if and only if C is of constant width τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}, for 0<τ<π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\tau <\pi $$\end{document}. Moreover, some applications to Wulff shapes are given.
引用
收藏
页码:167 / 174
页数:7
相关论文
共 13 条
  • [1] Han H(2017)Strictly convex Wulff shapes and Proc. Am. Math. Soc. 145 3997-4008
  • [2] Nishimura T(2017) convex integrands J. Math. Soc. Jpn. 69 1475-1484
  • [3] Han H(2019)Self-dual Wulff shapes and spherical convex bodies of constant width Studia Math. 245 201-211
  • [4] Nishimura T(2015)/2 Aequationes Math. 89 555-567
  • [5] Han H(2018)The spherical dual transform is an isometry for spherical Wulff shapes Aequationes Math. 92 627-640
  • [6] Nishimura T(2020)Width of spherical convex bodies Aequationes Math. 94 393-400
  • [7] Lassak M(2014)Spherical bodies of constant width J. Math. Soc. Jpn. 66 89-109
  • [8] Lassak M(2017)When a spherical body of constant diameter is of constant width? Adv. Appl. Math. 89 156-183
  • [9] Musielak M(undefined)Topological aspect of Wulff shapes undefined undefined undefined-undefined
  • [10] Lassak M(undefined)A generalization of undefined undefined undefined-undefined