Existence, Stability and Slow Dynamics of Spikes in a 1D Minimal Keller-Segel Model with Logistic Growth

被引:2
作者
Kong, Fanze [1 ]
Ward, Michael J. [1 ]
Wei, Juncheng [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Chemotaxis; Logistic growth; Spikes; Matched asymptotic expansions; Nonlocal eigenvalue problem; GIERER-MEINHARDT SYSTEM; PARABOLIC CHEMOTAXIS SYSTEM; ASYMPTOTIC STABILITY; PATTERN-FORMATION; STEADY-STATES; INSTABILITIES; BOUNDEDNESS; EQUILIBRIA; STRIPE; TRAPS;
D O I
10.1007/s00332-024-10025-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the existence, linear stability, and slow dynamics of localized 1D spike patterns for a Keller-Segel model of chemotaxis that includes the effect of logistic growth of the cellular population. Our analysis of localized patterns for this two-component reaction-diffusion (RD) model is based, not on the usual limit of a large chemotactic drift coefficient, but instead on the singular limit of an asymptotically small diffusivity d2=epsilon 2MUCH LESS-THAN1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2=\epsilon <^>2\ll 1$$\end{document} of the chemoattractant concentration field. In the limit d2MUCH LESS-THAN1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2\ll 1$$\end{document}, steady-state and quasi-equilibrium 1D multi-spike patterns are constructed asymptotically. To determine the linear stability of steady-state N-spike patterns, we analyze the spectral properties associated with both the "large" O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1)$$\end{document} and the "small" o(1) eigenvalues associated with the linearization of the Keller-Segel model. By analyzing a nonlocal eigenvalue problem characterizing the large eigenvalues, it is shown that N-spike equilibria can be destabilized by a zero-eigenvalue crossing leading to a competition instability if the cellular diffusion rate d1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1$$\end{document} exceeds a threshold, or from a Hopf bifurcation if a relaxation time constant tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is too large. In addition, a matrix eigenvalue problem that governs the stability properties of an N-spike steady-state with respect to the small eigenvalues is derived. From an analysis of this matrix problem, an explicit range of d1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1$$\end{document} where the N-spike steady-state is stable to the small eigenvalues is identified. Finally, for quasi-equilibrium spike patterns that are stable on an O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1)$$\end{document} time-scale, we derive a differential algebraic system (DAE) governing the slow dynamics of a collection of localized spikes. Unexpectedly, our analysis of the KS model with logistic growth in the singular limit d2MUCH LESS-THAN1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2\ll 1$$\end{document} is rather closely related to the analysis of spike patterns for the Gierer-Meinhardt RD system.
引用
收藏
页数:76
相关论文
共 67 条
[11]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[12]   Collapsing steady states of the Keller-Segel system [J].
del Pino, Manuel ;
Wei, Juncheng .
NONLINEARITY, 2006, 19 (03) :661-684
[13]   Nonlinear asymptotic stability of the semistrong pulse dynamics in a regularized Gierer-Meinhardt model [J].
Doelman, Arjen ;
Kaper, Tasso J. ;
Promislow, Keith .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) :1760-1787
[14]   Spatio-temporal oscillations in the Keller-Segel system with logistic growth [J].
Ei, Shin-Ichiro ;
Izuhara, Hirofumi ;
Mimura, Masayasu .
PHYSICA D-NONLINEAR PHENOMENA, 2014, 277 :1-21
[15]  
Engelmann T. W., 1882, PFLUEGERS ARCH, V27, P485
[16]  
FlexPDE, 2021, Solutions inc
[17]   Multiple interior peak solutions for some singularly perturbed Neumann problems [J].
Gui, CF ;
Wei, JC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (01) :1-27
[18]   Chemotactic collapse for the Keller-Segel model [J].
Herrero, MA ;
Velazquez, JJL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) :177-194
[19]   A user's guide to PDE models for chemotaxis [J].
Hillen, T. ;
Painter, K. J. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (1-2) :183-217
[20]   The one-dimensional chemotaxis model: global existence and asymptotic profile [J].
Hillen, T ;
Potapov, A .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (15) :1783-1801