Existence, Stability and Slow Dynamics of Spikes in a 1D Minimal Keller-Segel Model with Logistic Growth

被引:2
作者
Kong, Fanze [1 ]
Ward, Michael J. [1 ]
Wei, Juncheng [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Chemotaxis; Logistic growth; Spikes; Matched asymptotic expansions; Nonlocal eigenvalue problem; GIERER-MEINHARDT SYSTEM; PARABOLIC CHEMOTAXIS SYSTEM; ASYMPTOTIC STABILITY; PATTERN-FORMATION; STEADY-STATES; INSTABILITIES; BOUNDEDNESS; EQUILIBRIA; STRIPE; TRAPS;
D O I
10.1007/s00332-024-10025-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the existence, linear stability, and slow dynamics of localized 1D spike patterns for a Keller-Segel model of chemotaxis that includes the effect of logistic growth of the cellular population. Our analysis of localized patterns for this two-component reaction-diffusion (RD) model is based, not on the usual limit of a large chemotactic drift coefficient, but instead on the singular limit of an asymptotically small diffusivity d2=epsilon 2MUCH LESS-THAN1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2=\epsilon <^>2\ll 1$$\end{document} of the chemoattractant concentration field. In the limit d2MUCH LESS-THAN1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2\ll 1$$\end{document}, steady-state and quasi-equilibrium 1D multi-spike patterns are constructed asymptotically. To determine the linear stability of steady-state N-spike patterns, we analyze the spectral properties associated with both the "large" O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1)$$\end{document} and the "small" o(1) eigenvalues associated with the linearization of the Keller-Segel model. By analyzing a nonlocal eigenvalue problem characterizing the large eigenvalues, it is shown that N-spike equilibria can be destabilized by a zero-eigenvalue crossing leading to a competition instability if the cellular diffusion rate d1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1$$\end{document} exceeds a threshold, or from a Hopf bifurcation if a relaxation time constant tau\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document} is too large. In addition, a matrix eigenvalue problem that governs the stability properties of an N-spike steady-state with respect to the small eigenvalues is derived. From an analysis of this matrix problem, an explicit range of d1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_1$$\end{document} where the N-spike steady-state is stable to the small eigenvalues is identified. Finally, for quasi-equilibrium spike patterns that are stable on an O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal {O}}}(1)$$\end{document} time-scale, we derive a differential algebraic system (DAE) governing the slow dynamics of a collection of localized spikes. Unexpectedly, our analysis of the KS model with logistic growth in the singular limit d2MUCH LESS-THAN1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_2\ll 1$$\end{document} is rather closely related to the analysis of spike patterns for the Gierer-Meinhardt RD system.
引用
收藏
页数:76
相关论文
共 67 条
[1]   CHEMOTAXIS IN BACTERIA [J].
ADLER, J .
ANNUAL REVIEW OF BIOCHEMISTRY, 1975, 44 :341-356
[2]  
[Anonymous], 2000, Adv. Math. Sci. Appl.
[3]   Stable planar vegetation stripe patterns on sloped terrain in dryland ecosystems [J].
Bastiaansen, Robbin ;
Carter, Paul ;
Doelman, Arjen .
NONLINEARITY, 2019, 32 (08) :2759-2814
[4]   Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues [J].
Bellomo, N. ;
Bellouquid, A. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (09) :1663-1763
[5]   Neutrophil extracellular traps kill bacteria [J].
Brinkmann, V ;
Reichard, U ;
Goosmann, C ;
Fauler, B ;
Uhlemann, Y ;
Weiss, DS ;
Weinrauch, Y ;
Zychlinsky, A .
SCIENCE, 2004, 303 (5663) :1532-1535
[6]  
BROWN D A, 1974, Proceedings of the National Academy of Sciences of the United States of America, V71, P1388, DOI 10.1073/pnas.71.4.1388
[7]  
BUHRING W, 1987, SIAM J MATH ANAL, V18, P1227
[8]   Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability [J].
Carrillo, Jose A. ;
Li, Jingyu ;
Wang, Zhi-An .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 122 (01) :42-68
[9]   The Stability and Dynamics of Localized Spot Patterns in the Two-Dimensional Gray-Scott Model [J].
Chen, W. ;
Ward, M. J. .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (02) :582-666
[10]   Stability of spiky solution of Keller-Segel's minimal chemotaxis model [J].
Chen, Xinfu ;
Hao, Jianghao ;
Wang, Xuefeng ;
Wu, Yaping ;
Zhang, Yajing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (09) :3102-3134