The rank of the endomorphism monoid of a uniform partition

被引:0
作者
João Araújo
Csaba Schneider
机构
[1] Universidade Aberta,Informatics Research Laboratory
[2] Computer and Automation Research Institute,Centro de Álgebra
[3] Universidade de Lisboa,undefined
来源
Semigroup Forum | 2009年 / 78卷
关键词
Transformation semigroups; Rank; Relative rank; Wreath product; Symmetric groups;
D O I
暂无
中图分类号
学科分类号
摘要
The rank of a semigroup is the cardinality of a smallest generating set. In this paper we compute the rank of the endomorphism monoid of a non-trivial uniform partition of a finite set, that is, the semigroup of those transformations of a finite set that leave a non-trivial uniform partition invariant. That involves proving that the rank of a wreath product of two symmetric groups is two and then use the fact that the endomorphism monoid of a partition is isomorphic to a wreath product of two full transformation semigroups. The calculation of the rank of these semigroups solves an open question.
引用
收藏
相关论文
共 41 条
[1]  
Araújo J.(2007)Relative ranks in the monoid of endomorphisms of an independence algebra Mon.hefte. Math. 151 1-10
[2]  
Mitchell J.D.(2003)On generating countable sets of endomorphisms Algebra Univers. 50 61-67
[3]  
Araújo J.(1935)Sur un theorème de M. Sierpiński Fundam. Math. 25 5-6
[4]  
Mitchell J.D.(2003)Ranks of semigroups generated by order-preserving transformations with a fixed partition type Commun. Algebra 31 1753-1763
[5]  
Silva N.(2005)On idempotent ranks of semigroups of partial transformations Semigroup Forum 70 81-96
[6]  
Banach S.(1997)The Magma algebra system I: The user language J. Symb. Comput. 24 235-265
[7]  
Barnes G.(2007)Generating continuous mappings with Lipschitz mappings Trans. Am. Math. Soc. 359 2059-2074
[8]  
Levi I.(1994)On the nilpotent ranks of certain semigroups of transformations Glasg. Math. J. 36 1-9
[9]  
Barnes G.(1992)On the ranks of certain semigroups of order-preserving transformations Semigroup Forum 45 272-282
[10]  
Levi I.(1998)Generators and factorisations of transformation semigroups Proc. R. Soc. Edinb. Sect. A 128 1355-1369