Intersection Problem for Simple 2-fold (3n, n, 3) Group Divisible Designs

被引:0
作者
Fatih Demirkale
Diane Donovan
C. C. Lindner
机构
[1] University of Queensland,School of Mathematics and Physics, Centre for Discrete Mathematics and Computing
[2] Auburn University,Department of Mathematics and Statistics
来源
Graphs and Combinatorics | 2015年 / 31卷
关键词
Intersection problem; Group divisible designs; Quasigroups;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will give intersection numbers for two simple 2-fold (3n, n, 3) group divisible designs. More precisely, we will develop constructions which show that there exists two simple 2-fold (3n, n, 3) group divisible designs which intersect in precisely k∈{0,1,2,…,2n2}\{2n2-1,2n2-2,2n2-3,2n2-5}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${k \in \{0, 1, 2, \ldots, 2n^2\}{\setminus} \{2n^2-1, 2n^2-2, 2n^2-3, 2n^2-5\}}$$\end{document} triples for n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \geq 5}$$\end{document}. There are some exceptions for n = 2, 3, 4.
引用
收藏
页码:537 / 545
页数:8
相关论文
共 14 条
[1]  
Billington E.J.(2011)The triangle intersection problem for nested Steiner triple systems Australas. J. Comb. 51 221-233
[2]  
Donovan D.(1990)The intersection problem of Latin squares J. Comb. Inform. Syst. Sci. 15 89-95
[3]  
Lefevre J.(1987)The flower intersection problem for Steiner triple systems Ann. Discret. Math. 34 243-258
[4]  
McCourt T.(1975)Steiner triple systems having a prescribed number of triples in common Can. J. Math. 27 1166-1175
[5]  
Lindner C.C.(1995)Partitions of sets of two-fold triple systems, and their relation to some strongly regular graphs Graphs Comb. 11 347-366
[6]  
Fu C.M.(1960)Produit direct-singulier de quasigroupes orthogonaux et anti-abéliens Ann. Soc Sci. Bruxelles Sr. L 74 91-99
[7]  
Fu H.L.(undefined)undefined undefined undefined undefined-undefined
[8]  
Hoffman D.G.(undefined)undefined undefined undefined undefined-undefined
[9]  
Lindner C.C.(undefined)undefined undefined undefined undefined-undefined
[10]  
Lindner C.C.(undefined)undefined undefined undefined undefined-undefined