Photon regions and umbilic conditions in stationary axisymmetric spacetimesPhoton Regions

被引:0
作者
K. V. Kobialko
D. V. Gal’tsov
机构
[1] Moscow State University,Faculty of Physics
来源
The European Physical Journal C | 2020年 / 80卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Photon region (PR) in the strong gravitational field is defined as a compact region where photons can travel endlessly without going to infinity or disappearing at the event horizon. In Schwarzschild metric PR degenerates to the two-dimensional photon sphere r=3rg/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=3r_g/2$$\end{document} where closed circular photon orbits are located. The photon sphere as a three-dimensional hypersurface in spacetime is umbilic (its second quadratic form is pure trace). In Kerr metric the equatorial circular orbits have different radii for prograde, rp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_p$$\end{document}, and retrograde, rr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_r$$\end{document}, motion (where r is Boyer–Lindquist radial variable), while for rp<r<rr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r_p<r<r_r$$\end{document} the spherical orbits with constant r exist which are no more planar, but filling some spheres. These spheres, however, do not correspond to umbilic hypersurfaces. In more general stationary axisymmetric spacetimes not allowing for complete integration of geodesic equations, the numerical integration show the existence of PR as well, but the underlying geometric structure was not fully identified so far. Here we suggest geometric description of PR in generic stationary axisymmetric spacetimes, showing that PR can be foliated by partially umbilic hypersurfaces, such that the umbilic condition holds for classes of orbits defined by the foliation parameter. New formalism opens a way of analytic description of PR in stationary axisymmetric spacetimes with non-separable geodesic equations.
引用
收藏
相关论文
共 98 条
[1]  
Virbhadra KS(2000)undefined Phys. Rev. D 62 084003-170
[2]  
Ellis GFR(2001)undefined J. Math. Phys. 42 818-437
[3]  
Claudel CM(2016)undefined Phys. Lett. B 763 169-1024
[4]  
Virbhadra KS(1967)undefined Kodai Math. Sem. Rep. 19 35-undefined
[5]  
Ellis GFR(1972)undefined Phys. Rev. D 5 814-undefined
[6]  
Gibbons G W(2003)undefined Gen. Relat. Gravit. 35 1909-undefined
[7]  
Warnick C M(2018)undefined Eur. Phys. J. C 78 879-undefined
[8]  
Okumura M(2017)undefined Phys. Rev. D 96 024045-undefined
[9]  
Wilkins DC(2014)undefined Phys. Rev. D 89 124004-undefined
[10]  
Teo E(2015)undefined Int. J. Mod. Phys. D 24 1542024-undefined