Geometry in the tropical limit

被引:0
作者
I. Itenberg
G. Mikhalkin
机构
[1] Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, Institut Universitaire de France, Paris 75005
[2] Université de Genève Mathématiques, Carouge 1227, villa Battelle 7, route de Drize
关键词
Riemann Surface; Correspondence Principle; Tropical Variety; Tropical Geometry; Tropical Curve;
D O I
10.1007/s00591-011-0097-7
中图分类号
学科分类号
摘要
Complex algebraic varieties become easy piecewise-linear objects after passing to the so-called tropical limit. Geometry of these limiting objects is known as tropical geometry. In this short survey we take a look at motivation and intuition behind this limit and consider a few simple examples of correspondence principle between classical and tropical geometries. © 2011 Springer-Verlag.
引用
收藏
页码:57 / 73
页数:16
相关论文
共 16 条
[11]  
Litvinov G.L., Maslov V.P., The correspondence principle for idempotent calculus and some computer applications, Idempotency, pp. 420-443, (1998)
[12]  
Mikhalkin G., Enumerative tropical algebraic geometry in ℝ <sup>2</sup> , Journal of the American Mathematical Society, 18, 2, pp. 313-377, (2005)
[13]  
Mikhalkin G., Informal discussion: Enumeration of real elliptic curves, Oberwolfach Reports, 20-2011, pp. 44-47
[14]  
Viro O., Gluing of Plane Real Algebraic Curves and Construction of Curves of Degrees 6 and 7 Lect. Notes Math., 1060, pp. 187-200, (1984)
[15]  
Viro O., Dequantization of real algebraic geometry on a logarithmic paper, Proceedings of the European Congress of Mathematicians, 1, pp. 135-146, (2000)
[16]  
Welschinger J.-Y., Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry, Inventiones Mathematicae, 162, 1, pp. 195-234, (2005)