Geometry in the tropical limit

被引:0
作者
I. Itenberg
G. Mikhalkin
机构
[1] Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie, Institut Universitaire de France, Paris 75005
[2] Université de Genève Mathématiques, Carouge 1227, villa Battelle 7, route de Drize
关键词
Riemann Surface; Correspondence Principle; Tropical Variety; Tropical Geometry; Tropical Curve;
D O I
10.1007/s00591-011-0097-7
中图分类号
学科分类号
摘要
Complex algebraic varieties become easy piecewise-linear objects after passing to the so-called tropical limit. Geometry of these limiting objects is known as tropical geometry. In this short survey we take a look at motivation and intuition behind this limit and consider a few simple examples of correspondence principle between classical and tropical geometries. © 2011 Springer-Verlag.
引用
收藏
页码:57 / 73
页数:16
相关论文
共 16 条
[1]  
Brugalle E., Mikhalkin G., Enumeration of curves via floor diagrams, C. R. Acad. Sci., Ser. 1 Math., 345, 6, pp. 329-334, (2007)
[2]  
Fomin S., Mikhalkin G., Labeled floor diagrams for plane curves, J. Eur. Math. Soc., 12, pp. 1453-1496, (2010)
[3]  
Gelfand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, Resultants, and Multidimensional Determinants, (1994)
[4]  
Itenberg I., Kharlamov V., Shustin E., Welschinger Invariant and Enumeration of Real Rational Curves, International Mathematics Research Notices, 49, pp. 2639-2653, (2003)
[5]  
Itenberg I., Kharlamov V., Shustin E., A Caporaso-Harris type formula for Welschinger invariants of real toric Del Pezzo surfaces, Comment. Math. Helv., 84, pp. 87-126, (2009)
[6]  
Kapranov M., Thermodynamics and the Moment Map
[7]  
Kenyon R., Okounkov A., Sheffield S., Dimers and amoebae, Annals of Mathematics, 163, 3, pp. 1019-1056, (2006)
[8]  
Landau L.D., Lifshitz E.M., Course of Theoretical Physics, Quantum Mechanics: Non-Relativistic Theory, 3
[9]  
Landau L.D., Lifshitz E.M., Course of Theoretical Physics, Statistical Physics, 5, PART 1
[10]  
Litvinov G.L., Maslov's dequantization, idempotent and tropical mathematics: A very brief introduction, Idempotent Mathematics and Mathematical Physics, AMS Contemporary Mathematics, 377, pp. 1-17, (2005)