On Some Semi-Intuitionistic Logics

被引:0
作者
Juan M. Cornejo
Ignacio D. Viglizzo
机构
[1] Universidad Nacional del Sur and CONICET,Departamento de Matemática
来源
Studia Logica | 2015年 / 103卷
关键词
Semi-intuitionistic logic; Semi-Heyting algebras; Intuitionistic logic; Heyting algebras;
D O I
暂无
中图分类号
学科分类号
摘要
Semi-intuitionistic logic is the logic counterpart to semi-Heyting algebras, which were defined by H. P. Sankappanavar as a generalization of Heyting algebras. We present a new, more streamlined set of axioms for semi-intuitionistic logic, which we prove translationally equivalent to the original one. We then study some formulas that define a semi-Heyting implication, and specialize this study to the case in which the formulas use only the lattice operators and the intuitionistic implication. We prove then that all the logics thus obtained are equivalent to intuitionistic logic, and give their Kripke semantics.
引用
收藏
页码:303 / 344
页数:41
相关论文
共 11 条
  • [1] Abad M.(2010)The variety generated by semi-Heyting chains Soft Computing 15 721-728
  • [2] Cornejo J.M.(2013)Semi-Heyting algebras term-equivalent to Gödel algebras Order 2 625-642
  • [3] Diaz Varela J.P.(2011)Semi-intuitionistic logic Studia Logica 98 9-25
  • [4] Abad M.(1962)Pseudocomplements in semilattices Duke Mathematical Journal 29 505-514
  • [5] Cornejo J.M.(1960)On formulas of one variable in intuitionistic propositional calculus The Journal of Symbolic Logic 25 327-331
  • [6] Diaz Varela J.P.(2003)Synonymous logics Journal of Philosophical Logic 32 259-285
  • [7] Cornejo J.M.(undefined)undefined undefined undefined undefined-undefined
  • [8] Frink O.(undefined)undefined undefined undefined undefined-undefined
  • [9] Nishimura I.(undefined)undefined undefined undefined undefined-undefined
  • [10] Pelletier F.J.(undefined)undefined undefined undefined undefined-undefined