On families of nilpotent subgroups and associated coset posets

被引:0
作者
Simon Gritschacher
Bernardo Villarreal
机构
[1] Ludwig-Maximilians-University,
[2] Centro de Investigación en Matemáticas,undefined
来源
Journal of Homotopy and Related Structures | 2022年 / 17卷
关键词
Nilpotent group; 2-Engel group; Colimit of groups; Coset poset; Higher generation; Simplicial set; Simplicial complex; Primary 57M07; 20F18; 55U10; Secondary 20F12; 20F45;
D O I
暂无
中图分类号
学科分类号
摘要
We study some properties of the coset poset associated with the family of subgroups of class ≤2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 2$$\end{document} of a nilpotent group of class ≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 3$$\end{document}. We prove that under certain assumptions on the group the coset poset is simply-connected if and only if the group is 2-Engel, and 2-connected if and only if the group is nilpotent of class 2 or less. We determine the homotopy type of the coset poset for the group of 4×4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4\times 4$$\end{document} upper unitriangular matrices over Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_p$$\end{document}, and for the Burnside groups of exponent 3.
引用
收藏
页码:493 / 509
页数:16
相关论文
共 17 条
[1]  
Abels H(1993)Higher generation by subgroups J. Algebra 160 310-341
[2]  
Holz S(2012)Commuting elements, simplicial spaces and filtrations of classifying spaces Math. Proc. Camb. Philos. Soc. 152 91-114
[3]  
Adem A(2020)Nilpotent Proc. Edinb. Math. Soc. 63 1005-1030
[4]  
Cohen F(1971)-tuples in Bull. Aust. Math. Soc. 5 379-386
[5]  
Torres-Giese E(2000)Third Engel groups and the Macdonald–Neumann conjecture J. Algebra 225 989-1012
[6]  
Antolín-Camarena O(2017)the coset poset and probabilistic zeta function of a finite group J. Algebra Appl. 16 1750014-570
[7]  
Villarreal B(1964)Finite Illin. J. Math. 8 556-12
[8]  
Bachmuth S(2015)-groups whose proper subgroups are of class J. Algebra 443 1-128
[9]  
Mochizuki HY(1978)Generalisations of a classical theorem about nilpotent groups Adv. Math. 28 101-1273
[10]  
Brown K(2012)Colimits of abelian groups Bull. Lond. Math. Soc. 44 1259-undefined