The new approximation operators with sigmoidal functions

被引:7
|
作者
Zhang Z. [1 ]
Liu K. [1 ]
Zhu L. [1 ]
Chen Y. [1 ]
机构
[1] College of Mathematics, Hunan University
基金
中国国家自然科学基金;
关键词
Approximation; Estimate of error; Quasi-interpolation; Sigmoidal function; Two neural networks weights;
D O I
10.1007/s12190-013-0643-7
中图分类号
学科分类号
摘要
The aim of this paper is to investigate approximation operators with logarithmic sigmoidal function of a class of two neural networks weights and a class of quasi-interpolation operators. Using these operators as approximation tools, the upper bounds of estimate errors are estimated for approximating continuous functions. © 2013 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:455 / 468
页数:13
相关论文
共 50 条
  • [21] Approximation of the Heaviside function by sigmoidal functions in reaction-diffusion equations
    Sun, Wenlong
    Han, Xiaoying
    Kloeden, Peter E.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 128
  • [22] On sigmoidal functions
    Medvedeva, MV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1998, (01): : 16 - 20
  • [23] Approximation of functions by a new class of generalized Bernstein-Schurer operators
    Ozger, Faruk
    Srivastava, H. M.
    Mohiuddine, S. A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
  • [24] Approximation of functions by a new class of Gamma type operators; theory and applications
    Ozcelik, Reyhan
    Kara, Emrah Evren
    Usta, Fuat
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2024, 32 (01): : 247 - 264
  • [25] Strong Approximation of Functions by Positive Operators
    Zhuk V.V.
    Journal of Mathematical Sciences, 2016, 217 (1) : 45 - 53
  • [26] Entropy and the approximation of bounded functions and operators
    Richter, C
    Stephani, I
    ARCHIV DER MATHEMATIK, 1996, 67 (06) : 478 - 492
  • [27] Approximation of functions by the sequence of integral operators
    Yurdakadim, T.
    Tas, E.
    Sakaoglu, I.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (08) : 3863 - 3871
  • [28] Time operators and approximation of continuous functions
    Sorger, U.
    Suchanecki, Z.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (07) : 1792 - 1808
  • [29] Time Operators and Approximation of Continuous Functions
    U. Sorger
    Z. Suchanecki
    International Journal of Theoretical Physics, 2008, 47 : 1792 - 1808
  • [30] An analog of the Jackson-Nikol'skii theorem on the approximation by superpositions of sigmoidal functions
    Andrianov, AV
    MATHEMATICAL NOTES, 1996, 59 (5-6) : 661 - 664