Extra-special quotients of surface braid groups and double Kodaira fibrations with small signature

被引:0
作者
Francesco Polizzi
Pietro Sabatino
机构
[1] Università della Calabria,Dipartimento di Matematica e Informatica
来源
Geometriae Dedicata | 2022年 / 216卷
关键词
Surface braid groups; Extra-special ; -groups; Kodaira fibrations; 14J29; 14J25; 20D15;
D O I
暂无
中图分类号
学科分类号
摘要
We study some special systems of generators on finite groups, introduced in previous work by the first author and called diagonal double Kodaira structures, in order to investigate finite non-abelian quotients of the pure braid group on two strands P2(Σb)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {P}}_2(\Sigma _b)$$\end{document}, where Σb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma _b$$\end{document} is a closed Riemann surface of genus b. In particular, we prove that, if a finite group G admits a diagonal double Kodaira structure, then |G|≥32\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|G|\ge 32$$\end{document}, and equality holds if and only if G is extra-special. In the last section, as a geometrical application of our algebraic results, we construct two 3-dimensional families of double Kodaira fibrations having signature 16. Such surfaces are different from the ones recently constructed by Lee, Lönne and Rollenske and, as far as we know, they provide the first examples of positive-dimensional families of double Kodaira fibrations with small signature.
引用
收藏
相关论文
共 35 条
[1]  
Bardakov VG(2009)On residual properties of pure braid groups of closed surfaces Comm. Alg. 37 1481-1490
[2]  
Bellingeri P(2002)Surface bundles over surfaces of small genus Geom. Topol. 6 59-67
[3]  
Bryan J(2001)Surface bundles: some interesting examples Turkish J. Math. 25 61-68
[4]  
Donagi R(2009)Double Kodaira fibrations J. Reine Angew. Math. 628 205-233
[5]  
Bryan J(2017)Kodaira fibrations and beyond: methods for moduli theory Japan. J. Math. 12 91-174
[6]  
Donagi R(1957)On the index of a fibred manifold Proc. Amer. Math. Soc. 8 587-596
[7]  
Stipsicz AI(1978)On the Arf invariant J. Algebra 53 36-39
[8]  
Catanese F(1998)A construction of surface bundles over surfaces with non-zero signature Osaka J. Math. 35 915-930
[9]  
Rollenske S(2002)Commutators, Lefschetz fibrations and the signature of surface bundles Topology 41 961-977
[10]  
Catanese F(2004)On the structure of surface pure braid groups J. Pure Appl. Algebra 186 187-218