Error estimates for the numerical approximation of Neumann control problems governed by a class of quasilinear elliptic equations

被引:0
作者
Eduardo Casas
Vili Dhamo
机构
[1] Universidad de Cantabria,Dpto. de Matemática Aplicada y Ciencias de la Computación, E.T.S.I. Industriales y de Telecommunicación
[2] Technische Universität Berlin,Institut für Mathematik
来源
Computational Optimization and Applications | 2012年 / 52卷
关键词
Neumann boundary control; Quasilinear elliptic equation; Numerical approximation; Error estimates;
D O I
暂无
中图分类号
学科分类号
摘要
We study the numerical approximation of Neumann boundary optimal control problems governed by a class of quasilinear elliptic equations. The coefficients of the main part of the operator depend on the state function, as a consequence the state equation is not monotone. We prove that strict local minima of the control problem can be approximated uniformly by local minima of discrete control problems and we also get an estimate of the rate of this convergence. One of the main issues in this study is the error analysis of the discretization of the state and adjoint state equations. Some difficulties arise due to the lack of uniqueness of solution of the discrete equations. The theoretical results are illustrated by numerical tests.
引用
收藏
页码:719 / 756
页数:37
相关论文
共 49 条
  • [1] Arada N.(2002)Error estimates for the numerical approximation of a semilinear elliptic control problem Comput. Optim. Appl. 23 201-229
  • [2] Casas E.(1978)Simultaneous approximation in scales of Banach spaces Math. Comput. 32 947-954
  • [3] Tröltzsch F.(2007)Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems Adv. Comput. Math. 26 137-153
  • [4] Bramble J.(2010)Error estimates for the numerical approximation of a quaslinear Neumann problem under minimal regularity of the data Numer. Math. 117 115-145
  • [5] Scott J.(2002)Second order sufficient optimality conditions for semilinear elliptic control problems with finitely many state constraints SIAM J. Control Optim. 40 1431-1454
  • [6] Casas E.(2008)Error estimates for the numerical approximation of Neumann control problems Comput. Optim. Appl. 39 265-295
  • [7] Casas E.(2006)Error estimates for the numerical approximation of Dirichlet boundary control for semilinear elliptic equations SIAM J. Control Optim. 45 1586-1611
  • [8] Dhamo V.(2010)Approximation of boundary control problems on curved domains SIAM J. Control Optim. 48 3746-3780
  • [9] Casas E.(2009)Optimality conditions for a class of optimal control problems with quasilinear elliptic equations SIAM J. Control Optim. 48 688-718
  • [10] Mateos M.(2010)Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations ESAIM:COCV 31 193-220