Functional principal components analysis of workload capacity functions

被引:0
|
作者
Devin M. Burns
Joseph W. Houpt
James T. Townsend
Michael J. Endres
机构
[1] Indiana University,Psychological and Brain Sciences
[2] Wright State University,undefined
[3] Neurobehavioral Research,undefined
[4] Inc.,undefined
来源
Behavior Research Methods | 2013年 / 45卷
关键词
Workload capacity; Race model; Response times; Principal components analysis; Systems factorial technology;
D O I
暂无
中图分类号
学科分类号
摘要
Workload capacity, an important concept in many areas of psychology, describes processing efficiency across changes in workload. The capacity coefficient is a function across time that provides a useful measure of this construct. Until now, most analyses of the capacity coefficient have focused on the magnitude of this function, and often only in terms of a qualitative comparison (greater than or less than one). This work explains how a functional extension of principal components analysis can capture the time-extended information of these functional data, using a small number of scalar values chosen to emphasize the variance between participants and conditions. This approach provides many possibilities for a more fine-grained study of differences in workload capacity across tasks and individuals.
引用
收藏
页码:1048 / 1057
页数:9
相关论文
共 50 条
  • [41] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Test, 1999, 8 (1) : 1 - 73
  • [42] Simple principal components
    Vines, SK
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2000, 49 : 441 - 451
  • [43] HRTF compression via principal components analysis and vector quantization
    Wang, Lin
    Yin, Fuliang
    Chen, Zhe
    IEICE ELECTRONICS EXPRESS, 2008, 5 (09) : 321 - 325
  • [44] The measurement of the energy intensity of manufacturing industries:: a principal components analysis
    Bernard, JT
    Côté, B
    ENERGY POLICY, 2005, 33 (02) : 221 - 233
  • [45] Forensic classification of paper with infrared spectroscopy and principal components analysis
    Kher, A
    Stewart, S
    Mulholland, M
    JOURNAL OF NEAR INFRARED SPECTROSCOPY, 2005, 13 (04) : 225 - 229
  • [46] Principal Components Analysis on Financial Crisis in Listed Company of China
    Wei Zishuai
    Chen Zhiya
    MOT2009: PROCEEDINGS OF ZHENGZHOU CONFERENCE ON MANAGEMENT OF TECHNOLOGY, VOLS I AND II, 2009, : 712 - 716
  • [47] A principal components analysis of the autism diagnostic interview-revised
    Tadevosyan-Leyfer, O
    Dowd, M
    Mankoski, R
    Winklosky, B
    Putnam, S
    McGrath, L
    Tager-Flusberg, H
    Folstein, SE
    JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2003, 42 (07): : 864 - 872
  • [48] Discriminant Eigenfaces: A New Ranking Method for Principal Components Analysis
    Thomaz, Carlos Eduardo
    Giraldi, Gilson Antonio
    ADVANCES IN ARTIFICIAL INTELLIGENCE - SBIA 2008, PROCEEDINGS, 2008, 5249 : 43 - +
  • [49] Toxic event detection by respirometry and adaptive principal components analysis
    Le Bonté, S
    Potier, O
    Pons, MN
    ENVIRONMETRICS, 2005, 16 (06) : 589 - 601
  • [50] Study on Inversion of Temperature Distribution Based on Principal Components Analysis
    Hu Xin-yue
    Gao Ming-xi
    Ren Yu
    Tan Jian-yao
    Li Wei
    Jin Kun
    Shi San-zhi
    Cai Hong-xing
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32 (10) : 2789 - 2793