The Stokes Limit in a Three-Dimensional Chemotaxis-Navier–Stokes System

被引:0
|
作者
Tobias Black
机构
[1] Universität Paderborn,Institut für Mathematik
关键词
Chemotaxis; Navier–Stokes; Stokes limit; Eventual regularity; 35B40; 35D30; 35K55; 35Q35; 35Q92; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
We consider initial-boundary value problems for the κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}-dependent family of chemotaxis-(Navier–)Stokes systems nt+u·∇n=Δn-∇·(n∇c),x∈Ω,t>0,ct+u·∇c=Δc-cn,x∈Ω,t>0,ut+κ(u·∇)u=Δu+∇P+n∇ϕ,x∈Ω,t>0,∇·u=0,x∈Ω,t>0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{array}{lllllll} n_{t}&{}+&{}u\cdot \!\nabla n&{}=\Delta n-\nabla \!\cdot (n\nabla c), &{}x\in \Omega ,&{} t>0,\\ c_{t}&{}+&{}u\cdot \!\nabla c&{}=\Delta c-cn, &{}x\in \Omega ,&{} t>0,\\ u_{t}&{}+&{} \kappa (u\cdot \nabla )u&{}=\Delta u+\nabla P+n\nabla \phi , &{}x\in \Omega ,&{} t>0,\\ &{}&{} \nabla \cdot u&{}=0, &{}x\in \Omega ,&{} t>0, \end{array}\right. \end{aligned}$$\end{document}in a bounded domain Ω⊂R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb {R}}^3$$\end{document} with smooth boundary and given potential function ϕ∈C1+βΩ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in C^{1+\beta }\!\left( {{\,\mathrm{{\overline{\Omega }}}\,}}\right) $$\end{document} for some β>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta >0$$\end{document}. It is known that for fixed κ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \in {\mathbb {R}}$$\end{document} an associated initial-boundary value problem possesses at least one global weak solution (n(κ),c(κ),u(κ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n^{(\kappa )},c^{(\kappa )},u^{(\kappa )})$$\end{document}, which after some waiting time becomes a classical solution of the system. In this work we will show that upon letting κ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \rightarrow 0$$\end{document} the solutions (n(κ),c(κ),u(κ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n^{(\kappa )},c^{(\kappa )},u^{(\kappa )})$$\end{document} converge towards a weak solution of the Stokes variant (κ=0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\kappa =0)$$\end{document} of the systems above with respect to the strong topology in certain Lebesgue and Sobolev spaces. We thereby extend the recently obtained result on the Stokes limit process for classical solutions in the two-dimensional setting to the more intricate three-dimensional case.
引用
收藏
相关论文
共 50 条
  • [41] The production of uncertainty in three-dimensional Navier-Stokes turbulence
    Ge, Jin
    Rolland, Joran
    Vassilicos, John Christos
    JOURNAL OF FLUID MECHANICS, 2023, 977
  • [42] Exact Solutions of Three-Dimensional Transient Navier - Stokes Equations
    Singh, R. K.
    INTERNATIONAL JOURNAL OF FLUID MECHANICS RESEARCH, 2013, 40 (04) : 281 - 311
  • [43] Nonequilibrium ensembles for the three-dimensional Navier-Stokes equations
    Margazoglou, G.
    Biferale, L.
    Cencini, M.
    Gallavotti, G.
    Lucarini, V
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [44] Decay estimates for three-dimensional Navier–Stokes equations with damping
    Zhao, Xiaopeng
    Nonlinear Analysis: Real World Applications, 2021, 60
  • [45] Estimating intermittency in three-dimensional Navier-Stokes turbulence
    Gibbon, J. D.
    JOURNAL OF FLUID MECHANICS, 2009, 625 : 125 - 133
  • [46] The small-convection limit in a two-dimensional chemotaxis-Navier-Stokes system with singular sensitivity
    Zhao, Li
    Jiang, Ke
    Xia, Anyin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (07) : 5626 - 5647
  • [47] Partial regularity of suitable weak solution to a three-dimensional fractional parabolic-elliptic chemotaxis-Navier-Stokes system
    Lei, Yuzhu
    Liu, Zuhan
    Zhou, Ling
    PHYSICA SCRIPTA, 2024, 99 (01)
  • [48] On a three-dimensional chemotaxis-Stokes system with nonlinear sensitivity modeling coral fertilization
    Zheng, Pan
    Yang, Hanchun
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (07):
  • [49] Boundedness in a three-dimensional chemotaxis-Stokes system with tensor-valued sensitivity
    Wang, Yulan
    Pang, Fengqin
    Li, Huifang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (03) : 712 - 722
  • [50] Stability of the Couette flow for the two dimensional Chemotaxis-Navier-Stokes system
    Ding, Dandan
    Tan, Zhong
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 77