Variational construction for heteroclinic orbits of the N-center problem

被引:0
作者
Kuo-Chang Chen
Guowei Yu
机构
[1] National Tsing Hua University,Department of Mathematics
[2] Nankai University,Chern Institute of Mathematics and LPMC
来源
Calculus of Variations and Partial Differential Equations | 2020年 / 59卷
关键词
34C37; 37N05; 70K44;
D O I
暂无
中图分类号
学科分类号
摘要
It is well-known that the N-center problem is chaotic when N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}. By regularizing collisions, one can associate the dynamics with a symbolic dynamical system which yields infinitely many periodic and chaotic orbits, possibly with collisions. It is a challenging task to construct chaotic orbits without any collision. This paper addresses this problem by considering the planar N-center problem with collinear centers and N≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 3$$\end{document}. We show that, for any fixed nonnegative energy and certain types of periodic free-time minimizers, there are infinitely many collision-free heteroclinic orbits connecting them. Our approach is based on minimization of a normalized action functional over paths within certain topological classes, and the exclusion of collision is based on some recent advances on local deformation methods.
引用
收藏
相关论文
共 32 条
  • [1] Bolotin SV(1984)The effect of singularities of the potential energy on the integrability of mechanical systems Prikl. Mat. Mekh. 48 356-362
  • [2] Bolotin SV(1984)Nonintegrability of the problem of Vestnik Moskov. Univ. Ser. I Mat. Mekh. 3 65-68
  • [3] Bolotin SV(1993) centers for Russ. J. Math. Phys. 1 275-288
  • [4] Bolotin SV(2017)Homoclinic orbits of geodesic flows on surfaces Uspekhi Mat. Nauk 72 65-96
  • [5] Kozlov VV(2017)Topological approach to the generalized Izv. Ross. Akad. Nauk Ser. Mat. 81 3-19
  • [6] Bolotin SV(2001)-centre problem Ergod. Theory Dyn. Syst. 21 383-399
  • [7] Kozlov VV(2000)Topology, singularities and integrability in Hamiltonian systems with two degrees of freedom Ann. Inst. H. Poincaré Anal. Non Linéaire 17 673-709
  • [8] Bolotin SV(2017)Regularization and topological entropy for the spatial Arch. Ration. Mech. Anal. 223 941-975
  • [9] Negrini P(2018)-center problem Ergod. Theory Dyn. Syst. 38 566-582
  • [10] Bosetto E(2014)A variational approach to chaotic dynamics in periodically forced nonlinear oscillators Math. Proc. Cambrid. Philos. Soc. 156 209-227