Numerical analysis of the drop impact onto a liquid film of non-linear viscoelastic fluids

被引:0
|
作者
M. R. Rezaie
M. Norouzi
M. H. Kayhani
S. M. Taghavi
机构
[1] Shahrood University of Technology,Faculty of Mechanical Engineering
[2] Laval University,Chemical Engineering Department
来源
Meccanica | 2021年 / 56卷
关键词
Crown formation; Drop impact; Numerical analysis; Viscoelastic fluid; Giesekus model;
D O I
暂无
中图分类号
学科分类号
摘要
This paper numerically analyzes the crown formation due to a plane two-dimensional drop impact onto a pre-existing film in a viscoelastic fluid. The finite volume method is applied to solve the governing equations, and the volume of fluid technique is utilized to track the liquid’s free surface. Here, the non-linear Giesekus model is used as the constitutive equation for the viscoelastic phase. The formation and temporal evolution of the crown’s parameters are evaluated using fluid elasticity and non-linear viscometric functions. The results show that a rise in the Weissenberg number, the viscosity ratio, the Weber number, and the mobility factor of the viscoelastic fluid leads to an increase in both the dimensionless height and radius of the crown, while increasing the Bond number leads to a decrease in the growth of the crown’s dimensions. Moreover, by increasing the film’s thickness, the crown’s height increases, while the crown’s radius decreases. One of the main findings of the present study is that the fluid’s elasticity and surface tension forces enhance the crown’s propagation.
引用
收藏
页码:2021 / 2038
页数:17
相关论文
共 50 条
  • [1] Numerical analysis of the drop impact onto a liquid film of non-linear viscoelastic fluids
    Rezaie, M. R.
    Norouzi, M.
    Kayhani, M. H.
    Taghavi, S. M.
    MECCANICA, 2021, 56 (08) : 2021 - 2038
  • [2] A Lattice Boltzmann model for the numerical simulation of non-linear viscoelastic fluids
    Giraud, L
    PROGRESS AND TRENDS IN RHEOLOGY V, 1998, : 349 - 350
  • [3] Numerical analysis of droplet impact onto liquid film
    Shetabivash, H.
    Ommi, F.
    Heidarinejad, G.
    PHYSICS OF FLUIDS, 2014, 26 (01)
  • [4] DISINTEGRATION OF NON-LINEAR VISCOUS AND NON-LINEAR VISCOELASTIC LIQUID FLOWS
    KHUSID, BM
    DOKLADY AKADEMII NAUK BELARUSI, 1982, 26 (04): : 333 - 336
  • [5] Simulations of a rising drop in a non-linear viscoelastic fluid
    Wagner, AJ
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2005, 5 (1-2): : 20 - 26
  • [6] Simulations of a rising drop in a non-linear viscoelastic fluid
    Wagner, A.J. (Alexander.Wagner@ndsu.nodak.edu), 2005, Inderscience Publishers (05): : 1 - 2
  • [7] Modifications to non-linear rheological modes of viscoelastic fluids
    Savarmand, S
    Narenji, MRG
    Wilkinson, WL
    IRANIAN POLYMER JOURNAL, 1998, 7 (03) : 195 - 203
  • [9] Modifications to non-linear rheological models of viscoelastic fluids
    Amirkabir Univ of Technology, Tehran, Iran
    Iranian Polymer Journal (English Edition), 1998, 7 (03): : 195 - 203
  • [10] An Analytical Solution for Non-Linear Viscoelastic Impact
    Alaci, Stelian
    Filote, Constantin
    Ciornei, Florina-Carmen
    Grosu, Oana Vasilica
    Raboaca, Maria Simona
    MATHEMATICS, 2021, 9 (16)