Priestley Duality for Paraconsistent Nelson’s Logic

被引:0
作者
Sergei P. Odintsov
机构
[1] Sobolev Institute of Mathematics,
[2] Novosibirsk State University,undefined
来源
Studia Logica | 2010年 / 96卷
关键词
Nelson logic; Nelson algebra; -lattice; twist-structure; Priestley duality; Priestley space; Nelson space; paraconsistent logic;
D O I
暂无
中图分类号
学科分类号
摘要
The variety of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf N4}^\perp}$$\end{document}-lattices provides an algebraic semantics for the logic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf N4}^\perp}$$\end{document} , a version of Nelson’s logic combining paraconsistent strong negation and explosive intuitionistic negation. In this paper we construct the Priestley duality for the category of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bf N4}^\perp}$$\end{document}-lattices and their homomorphisms. The obtained duality naturally extends the Priestley duality for Nelson algebras constructed by R. Cignoli and A. Sendlewski.
引用
收藏
页码:65 / 93
页数:28
相关论文
共 18 条
[1]  
Cignoli R.(1986)‘The class of Kleene algebras satisfying interpolation preperty and Nelson algebras’ Algebra Universalis 23 262-292
[2]  
Cornish W.H.(1977)‘Coproducts of De Morgan algebras’ Bull. Austral. Math. Soc. 16 1-13
[3]  
Fowler P.R.(1979)‘Coproducts of Kleene algebras’ J. Austral. Math. Soc. (Ser. A) 27 209-220
[4]  
Cornish W.H.(1998)‘On extensions of intermediate logics by strong negation’ Journal of Philosophical Logic 27 49-73
[5]  
Fowler P.R.(1963)‘Construction des algèbres de Nelson finies’ Bull. Acad. Pol. Sci. 11 359-362
[6]  
Kracht M.(1949)‘Constructible falsity’ Journal of Symbolic Logic 14 16-26
[7]  
Monteiro A.(2003)‘Algebraic semantics for paraconsistent Nelson’s logic’ Journal of Logic and Computation 13 453-468
[8]  
Nelson D.(2004)‘On representation of N4-lattices’ Studia Logica 76 385-405
[9]  
Odintsov S.P.(2005)‘The class of extensions of Nelson paraconsistent logic’ Studia Logica 80 291-320
[10]  
Odintsov S.P.(1970)‘Representation of distributive lattices by means of ordered Stone spaces’ Bull. London Math. Soc. 2 186-190