Merotopological Spaces

被引:0
|
作者
H. L. Bentley
H. Herrlich
机构
[1] University of Toledo,
[2] Universität Bremen,undefined
来源
Applied Categorical Structures | 2004年 / 12卷
关键词
topological space; merotopic space; nearness space; merotopological space; epireflective hull; bunch; cluster; completion;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce a new topological-type of structured set called merotopological space. The appropriate morphisms are defined and characterizations of the corresponding initial and final structures are given. The resulting category contains as fully embedded subcategories not only the category of topological spaces and continuous maps but also the category of merotopic spaces and uniformly continuous maps, and, a fortiori, the category of nearness spaces and the category of uniform spaces. A functorial completion is constructed for merotopological spaces using bunches. A problem that has remained long open in the setting of nearness spaces is to find an internal characterization of the epireflective hull of the topological spaces. We solve the analogue of this problem in the setting of merotopological spaces. Applications to the Wyler prime closed filter compactification and to Taimanov's extension theorem are given.
引用
收藏
页码:155 / 180
页数:25
相关论文
共 50 条
  • [1] Merotopological spaces
    Bentley, HL
    Herrlich, H
    APPLIED CATEGORICAL STRUCTURES, 2004, 12 (02) : 155 - 180
  • [2] Completing extended metric spaces: An alternative approach
    Peters, James F.
    Tiwari, Surabhi
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1544 - 1547
  • [3] Mappings of Figure Spaces and Systems of These Spaces
    V. Ya. Burdyuk
    Cybernetics and Systems Analysis, 2004, 40 (2) : 169 - 183
  • [4] Completing quasi-metric spaces - An alternative approach
    Lowen, R
    Sioen, M
    Vaughan, D
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (01): : 113 - 136
  • [5] Δ-spaces
    Yu. L. Ershov
    Algebra and Logic, 1999, 38 (6) : 367 - 373
  • [6] Perfectoid Spaces
    Peter Scholze
    Publications mathématiques de l'IHÉS, 2012, 116 : 245 - 313
  • [7] On Jakovlev spaces
    Uri Abraham
    Isaac Gorelic
    István Juhász
    Israel Journal of Mathematics, 2006, 152 : 205 - 219
  • [8] γ-compact spaces
    Császár, A
    ACTA MATHEMATICA HUNGARICA, 2000, 87 (1-2) : 99 - 107
  • [9] γ-Compact Spaces
    Á Császár
    Acta Mathematica Hungarica, 2000, 87 : 99 - 107
  • [10] PARACOMPACT SPACES
    BENTLEY, HL
    TOPOLOGY AND ITS APPLICATIONS, 1991, 39 (03) : 283 - 297