Some New Refinements of Generalized Numerical Radius Inequalities for Hilbert Space Operators

被引:0
作者
Kais Feki
Fuad Kittaneh
机构
[1] University of Monastir,Faculty of Economic Sciences and Management of Mahdia
[2] University of Sfax,Laboratory Physics
[3] The University of Jordan,Mathematics and Applications (LR/13/ES
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Positive operator; Semi-inner product; Numerical radius; -adjoint operator; Inequality; Seminorm; Primary 46C05; 47A12; Secondary 47B65; 47B15; 47B20;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a positive (semi-definite) bounded linear operator on a complex Hilbert space (H,⟨·,·⟩)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {H}},\langle \cdot ,\cdot \rangle )$$\end{document}. Let ωA(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _A(T)$$\end{document} and ‖T‖A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert T\Vert _A$$\end{document} denote the A-numerical radius and the A-operator seminorm of an operator T acting on the semi-Hilbert space (H,⟨·,·⟩A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathcal {H}},\langle \cdot ,\cdot \rangle _A)$$\end{document} respectively, where ⟨x,y⟩A:=⟨Ax,y⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle x, y\rangle _{A} :=\langle Ax, y\rangle $$\end{document} for all x,y∈H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x,y\in {\mathcal {H}}$$\end{document}. It is well-known that 14‖T♯AT+TT♯A‖A≤ωA2T≤12‖T♯AT+TT♯A‖A,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{1}{4}\Vert T^{\sharp _A} T+TT^{\sharp _A}\Vert _A\le \omega _A^2\left( T\right) \le \frac{1}{2}\Vert T^{\sharp _A} T+TT^{\sharp _A}\Vert _A, \end{aligned}$$\end{document}where T♯A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^{\sharp _A}$$\end{document} denotes a distinguished A-adjoint operator of T. In this paper, we aim to give some new refinements of the above inequalities. Furthermore, we establish an A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}$$\end{document}-seminorm inequality involving 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\times 2$$\end{document} operator matrices, where A=diag(A,A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {A}}=\text {diag}(A,A)$$\end{document}. This generalizes a recent result of Bani-Domi and Kittaneh. As an application, a refinement of the triangle inequality related to ‖·‖A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert \cdot \Vert _A$$\end{document} is given.
引用
收藏
相关论文
共 44 条
[1]  
Abu-Omar A(2019)A generalization of the numerical radius Linear Algebra Appl. 569 323-334
[2]  
Kittaneh F(2019)Hilbert-Schmidt numerical radius inequalities for operator matrices Linear Algebra Appl. 581 72-84
[3]  
Aldalabih A(2008)Partial isometries in semi-Hilbertian spaces Linear Algebra Appl. 428 1460-1475
[4]  
Kittaneh F(2008)Metric properties of projections in semi-Hilbertian spaces Integral Equ. Oper. Theory 62 11-28
[5]  
Arias ML(2009)Lifting properties in operator ranges Acta Sci. Math. (Szeged) 75 635-653
[6]  
Corach G(2021)Norm and numerical radius inequalities for Hilbert space operators Linear Multilinear Algebra 69 934-945
[7]  
Gonzalez MC(2021)-Numerical radius orthogonality and parallelism of semi-Hilbertian space operators and their applications Bull. Iran. Math. Soc. 47 435-457
[8]  
Arias ML(2020)On inequalities for Electron. J. Linear Algebra 36 143-157
[9]  
Corach G(2021)-numerical radius of operators Results Math. 76 209-416
[10]  
Gonzalez MC(1966)On Proc. Am. Math. Soc. 17 413-264