A new holographic dark energy model in Brans-Dicke theory with logarithmic scalar field

被引:0
作者
Ehsan Sadri
Babak Vakili
机构
[1] Islamic Azad University,Department of Physics, Central Tehran Branch
来源
Astrophysics and Space Science | 2018年 / 363卷
关键词
Holographic dark energy; Brans-Dicke theory; Coincidence problem;
D O I
暂无
中图分类号
学科分类号
摘要
We study a holographic dark energy model in the framework of Brans-Dicke (BD) theory with taking into account the interaction between dark matter and holographic dark energy. We use the recent observational data sets, namely SN Ia compressed Joint Light-Analysis (cJLA) compilation, Baryon Acoustic Oscillations (BAO) from BOSS DR12 and the Cosmic Microwave Background (CMB) of Planck 2015. After calculating the evolution of the equation of state as well as the deceleration parameters, we find that with a logarithmic form for the BD scalar field the phantom crossing can be achieved in the late time of cosmic evolution. Unlike the conventional theory of holographic dark energy in standard cosmology (ωD=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega_{D}=0$\end{document}), our model results in a late time accelerated expansion. It is also shown that the cosmic coincidence problem may be resolved in the proposed model. We execute the statefinder and Om diagnostic tools and demonstrate that interaction term does not play a significant role. Based on the observational data sets used in this paper it seems that the best value with 1σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1\sigma $\end{document} and 2σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2\sigma $\end{document} confidence interval are Ωm=0.268−0.007−0.009+0.008+0.010\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varOmega_{m}=0.268^{+0.008~+0.010}_{-0.007~-0.009}$\end{document}, α=3.361−0.401−0.522+0.332+0.483\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha =3.361^{+0.332~+0.483} _{-0.401~-0.522}$\end{document}, β=5.560−0.510−0.729+0.541+0.780\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta =5.560^{+0.541~+0.780}_{-0.510~-0.729}$\end{document}, c=0.777−0.017−0.023+0.023+0.029\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$c=0.777^{+0.023~+0.029}_{-0.017~-0.023}$\end{document} and b2=0.045\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$b^{2} =0.045$\end{document}, according to which we find that the proposed model in the presence of interaction is compatible with the recent observational data.
引用
收藏
相关论文
共 93 条
[1]  
Ade P.A.R.(2016)undefined Astron. Astrophys. 594 1057-undefined
[2]  
Alam U.(2003)undefined Mon. Not. R. Astron. Soc. 344 470-undefined
[3]  
Sahni V.(2017)undefined Mon. Not. R. Astron. Soc. 2617 155-undefined
[4]  
Saini T.D.(1999)undefined Phys. Rev. D 60 477-undefined
[5]  
Starobinsky A.A.(2000)undefined Phys. Rev. D 62 4971-undefined
[6]  
Alam S.(2012)undefined Astrophys. Space Sci. 342 199-undefined
[7]  
Amendola L.(2007)undefined Phys. Lett. B 647 111-undefined
[8]  
Amendola L.(2014)undefined Astron. Astrophys. 568 13-undefined
[9]  
Bamba K.(2009)undefined Phys. Rev. D 79 542-undefined
[10]  
Capozziello S.(1999)undefined Phys. Rev. Lett. 82 712-undefined