On a Hilbert-Type Integral Inequality in the Whole Plane Related to the Extended Riemann Zeta Function

被引:1
作者
Michael Th. Rassias
Bicheng Yang
机构
[1] University of Zurich,Institute of Mathematics
[2] Moscow Institute of Physics and Technology,Department of Mathematics
[3] Institute for Advanced Study,undefined
[4] Program in Interdisciplinary Studies,undefined
[5] Guangdong University of Education,undefined
来源
Complex Analysis and Operator Theory | 2019年 / 13卷
关键词
Hilbert-type integral inequality; Kernel; Weight function; Equivalent form; Operator; Norm; 26D15; 47A07; 65B10;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, a few equivalent conditions of a Hilbert-type integral inequality with the nonhomogeneous kernel in the whole plane are obtained. The best possible constant factor is related to the extended Riemann zeta function. In the form of applications, a few equivalent conditions of a Hilbert-type integral inequality with the homogeneous kernel in the whole plane are deduced. We also consider the operator expressions and a few particular cases.
引用
收藏
页码:1765 / 1782
页数:17
相关论文
共 49 条
[1]  
Yang BC(2006)On the norm of an integral operator and applications J. Math. Anal. Appl. 321 182-192
[2]  
Xu JS(2007)Hardy–Hilbert’s inequalities with two parameters Adv. Math. 36 63-76
[3]  
Yang BC(2007)On the norm of a Hilbert’s type linear operator and applications J. Math. Anal. Appl. 325 529-541
[4]  
Xin DM(2010)A Hilbert-type integral inequality with the homogeneous kernel of zero degree Math. Theory Appl. 30 70-74
[5]  
Yang BC(2010)A Hilbert-type integral inequality with the homogenous kernel of degree 0 J. Shandong Univ. (Nat. Sci.) 45 103-106
[6]  
Debnath L(2012)Recent developments of Hilbert-type discrete and integral inequalities with applications Int. J. Math. Math. Sci. 220 75-93
[7]  
Yang BC(2013)On half-discrete Hilbert’s inequality Appl. Math. Comput. 6 401-417
[8]  
Rassias MT(2012)A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0 J. Math. Inequal. 225 263-277
[9]  
Yang BC(2013)A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function Appl. Math. Comput. 242 800-813
[10]  
Yang BC(2013)On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function Appl. Math. Comput. 2015 302-859