DGFAU-Net: Global feature attention upsampling network for medical image segmentation

被引:0
|
作者
Dunlu Peng
Xi Yu
Wenjia Peng
Jianping Lu
机构
[1] The University of Shanghai for Science and Technology,Shanghai Key Lab of Modern Optical System
[2] Changhai Hospital Affiliated to the Second Military Medical University,Department of Radiology
来源
关键词
Deep learning; Global context information; Neural networks; Medical image segmentation;
D O I
暂无
中图分类号
学科分类号
摘要
Medical image segmentation plays an important role in many clinical medicines, such as medical diagnosis and computer-assisted treatment. However, due to the large quality differences, variable lesion areas and their complex shapes, medical image segmentation is a very challenging task. However, most of the recent deep learning methods ignore the global context information as well as the receptive fields of pixels and do not consider the reuse of pixel features during the feature extraction stage. In this paper, we propose DGFAU-Net, an encoder–decoder structured 2D segmentation model, to overcome the shortcomings aforementioned. In the encoder, DenseNet and AtrousCNN networks are leveraged to extract image features. The DenseNet network is mainly used to achieve the reuse of pixel features, and AtrousCNN is utilized to enhance the receptive field of pixels. In the decoder, two modules, global feature attention upsample (GFAU) and pyramid pooling attention squeeze-excitation (PPASE), are proposed. GFAU combines low-level and high-level features to generate new features with richer information for improving the perceptions of global contextual information of pixels. PPASE employs a multi-scale pooling layer to enhance the pixel’s acceptance field. In addition, Focal loss is used to balance the difference between samples of the lesion and non-lesioned areas. Extensive experiments are conducted on one local dataset and two public datasets, which are the local dataset of MRI images of carotid plaque, DRIVE vessel segmentation dataset and CHASE_DB1 vessel segmentation dataset, and the experimental results demonstrate the effectiveness of our proposed model.
引用
收藏
页码:12023 / 12037
页数:14
相关论文
共 50 条
  • [1] DGFAU-Net: Global feature attention upsampling network for medical image segmentation
    Peng, Dunlu
    Yu, Xi
    Peng, Wenjia
    Lu, Jianping
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (18): : 12023 - 12037
  • [2] An Attention-oriented U-Net Model and Global Feature for Medical Image Segmentation
    Han, Yandong
    Li, Jiangjiang
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2020, 23 (04): : 731 - 738
  • [3] AF-Net: A Medical Image Segmentation Network Based on Attention Mechanism and Feature Fusion
    Hou, Guimin
    Qin, Jiaohua
    Xiang, Xuyu
    Tan, Yun
    Xiong, Neal N.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 1877 - 1891
  • [4] Feature-guided attention network for medical image segmentation
    Zhou, Hao
    Sun, Chaoyu
    Huang, Hai
    Fan, Mingyu
    Yang, Xu
    Zhou, Linxiao
    MEDICAL PHYSICS, 2023, 50 (08) : 4871 - 4886
  • [5] FFANet: Feature fusion attention network to medical image segmentation
    Yu, Jiankang
    Yang, Dedong
    Zhao, Hanshuo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 69 (69)
  • [6] GC -Net: Global context network for medical image segmentation
    Ni, Jiajia
    Wu, Jianhuang
    Tong, Jing
    Chen, Zhengming
    Zhao, Junping
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 190
  • [7] Mu-Net: Multi-Path Upsampling Convolution Network for Medical Image Segmentation
    Chen, Jia
    He, Zhiqiang
    Zhu, Dayong
    Hui, Bei
    Li, Rita Yi Man
    Xiao-Guang Yue
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 131 (01): : 73 - 95
  • [8] TA-Net: Triple attention network for medical image segmentation
    Li, Yang
    Yang, Jun
    Ni, Jiajia
    Elazab, Ahmed
    Wu, Jianhuang
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 137
  • [9] Multi-level Feature Attention Network for medical image segmentation
    Zhang, Yaning
    Yin, Jianjian
    Gu, Yanhui
    Chen, Yi
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
  • [10] Deep supervision feature refinement attention network for medical image segmentation
    Fu, Zhaojin
    Li, Jinjiang
    Hua, Zhen
    Fan, Linwei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 125