Hamilton-Jacobi Equations on Graph and Applications

被引:0
作者
Yan Shu
机构
[1] Modélisation aléatoire de Paris Ouest Nanterre La Défense(MODAL’X),
来源
Potential Analysis | 2018年 / 48卷
关键词
Hamilton-Jacobi equations; Weak-transport entropy inequalities; Modified Log-Sob inequalities on graphs; 35F21; 35R02; 37L50; 70H20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces a notion of gradient and an infimal-convolution operator that extend properties of solutions of Hamilton Jacobi equations to more general spaces, in particular to graphs. As a main application, the hypercontractivity of this class of infimal-convolution operators is connected to some discrete version of the log-Sobolev inequality and to a discrete version of Talagrand’s transport inequality.
引用
收藏
页码:125 / 157
页数:32
相关论文
共 61 条
[1]  
Abakumov E(2013)The logarithmic Sobolev constant of the lamplighter J. Math. Anal. Appl. 399 576-585
[2]  
Beaulieu A(2014)Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below Invent Mathematics 195 289-391
[3]  
Blanchard F(2012)Functional inequalities and Hamilton–Jacobi equations in geodesic spaces Potential Anal. 36 317-337
[4]  
Fradelizi M(2001)Hypercontractivity of hamilton-jacobi equations J. Math. Pures Appl. 80 669-696
[5]  
Gozlan N(2006)Modified logarithmic sobolev inequalities in discrete settings J. Theor. Probab. 19 289-335
[6]  
Host B(2013)A comparison among various notions of viscosity solution for Hamilton-Jacobi equations on networks J. Math. Anal Appl. 407 112-118
[7]  
Jeantheau T(1997)Information inequalities and concentration of measure Ann. Inf. Probab. 25 927-939
[8]  
Kobylanski M(1996)Logarithmic Sobolev inequalities for finite Markov chains Ann. Appl Probab. 6 695-750
[9]  
Lecué G(2013)From log Sobolev to Talagrand: a quick proof Discret. Contin. Dyn. Syst. 33 1927-1935
[10]  
Martinez M(2009)A characterization of dimension free concentration in terms of transportation inequalities Ann. Probab. 37 2480-2498